
REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

31 March 1998
3. REPORT TYPE AND DATES COVERED

Technical Report

4. TITLE AND SUBTITLE

Logic Programs, Well-orderings and Forward Chaining
5. FUNDING NUMBERS

DAAH04-96-1-0341
6. AUTHOR(S)

W.V. Marek, A. Nerode and J.B. Remmel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park» NC 27709-2211

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

/\U 3S*»7 3.6S--/*>/*-A»IIA-4

U. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION /AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We invesitgate the construction of stable models of general propositional logic programs. We show
that a forward-chaining technique, supplemented by a properly chosen safeguards can be used to
construct stable models of logic programs. Moreover, the proposed method has the advantage that if
a program has no stable model, the result of the construction is a stable model of a subprogram.
Further, in such a case the proposed method isolates the inconsistency of the program, that is it
points to the part of the program responsible for the inconsistency. The results of computations are
called stable submodels. We prove that every stable model of a program is a stable submodel. We
investigate the complexity issues associated with stable submodels.

14. SUBJECT TERMS

complexity, stable model, forward chaining
15. NUMBER OF PAGES

50

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

19980519 051
Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

CORNELL
UNIVERSITY

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

Technical Report
98-05

Logic Programs, Well-orderings
and Forward Chaining

V. W. MAREK, A. NERODE AND J. B.
REMMEL

March 1998

Logic Programs, Well-orderings, and Forward Chaining

V.W. Mareka'x A. Nerodeb'2 J.B. Remmelc'3

a
 Department of Computer Science

University Kentucky, Lexington, KY 40506-0027.
b Mathematical Sciences Institute,

Cornell University, Ithaca, NY 14853.
c Department of Mathematics,

University of California at San Diego, La Jolla, CA 92903.

We investigate the construction of stable models of general propositional
logic programs. We show that a forward-chaining technique, supplemented
by a properly chosen safeguards can be used to construct stable models
of logic programs. Moreover, the proposed method has the advantage
that if a program has no stable model, the result of the construction is
a stable model of a subprogram. Further, in such a case the proposed
method "isolates the inconsistency" of the program, that is it points to
the part of the program responsible for the inconsistency. The results
of computations are called stable submodels. We prove that every stable
model of a program is a stable submodel. We investigate the complexity
issues associated with stable submodels. The number of steps required to
construct a stable submodel is polynomial in the sum of the lengths of
the rules of the program. In the infinite case the outputs of the forward
chaining procedure have much simpler complexity than those for general
stable models. We show how to incorporate other techniques for finding
models (e.g. Fitting operator, Van Gelder-Ross-Schlipf operator) into our
construction.

1 Introduction and Motivation

One of the problems which motivated this paper is how do we deal with incon-
sistent information. For example, suppose that we want to develop an expert

1 Research partially supported by NSF grant IRI-9400568.
2 Research partially supported by USARO MURI DAAH-04-96-10341, Center for
Foundations of Intelligent Systems at Cornell University.
3 Research partially supported by NSF grant DMS-93064270.

Preprint submitted to Elsevier Preprint 17 March 1998

system using logic programming with negation as failure. It may be the case
that the knowledge engineer gathers facts, i.e. clauses of the form p <-. rules
without exceptions, i.e. clauses of the form p <- qu...qn, and rules with ex-
ception or rules of thumb, i.e. clauses of the form p <- qu ... qn, ->Ti . ->/-m,
from several experts. One problem is that the resulting program may be in-
consistent in the sense that the program has no stable model. That is, the
experts may not be consistent. The question then becomes how can we elim-
inate some of the clauses so that we can get a consistent program. That is,
at a minimum, we would like to select a subprogram of the original program
which has a stable model. Various schemes have been proposed in the litera-
ture to do this [GS92,GS93,KL89]. For example, we may throw away the rules
which came from what we feel are the most unreliable experts until we get a
consistent program. However even in the case when the knowledge engineer
consults only a single expert, the rules that the knowledge engineer produces
may be inconsistent because the rules that he or she abstracted are not specific
enough or simply because the expert did not give us a consistent set of rules.

The above scenario is one practical reason that we would desire some proce-
dure to construct, for a given program which has no stable model, a maximal
subprogram that does have a stable model. Another practical reason occurs
when we are using a logic program to control a plant in real time, see [KN93a]
for examples. In this case, the program may have a stable model but that
stable model may be very complicated and we do not have enough time to
compute the full stable model. It has been shown [MT91] that the problem of
determining whether a finite propositional logic program has a stable model
is NP-complete. Moreover, the authors have shown [MNR92a] that there are
finite predicate logic programs which have stable models but which have no
stable models which are hyperarithmetic so that there is no possible hope that
one could compute a stable model of the program no matter how much time
one has. Thus if there are time problems, one may be satisfied by a procedure
which would construct a subprogram of the original program and a stable
model of the subprogram as long as both the subprogram and stable model of
the subprogram can.be computed rapidly, in fact, in polynomial time.

Indeed some see as a general problem with the stable model semantics the fact
that there are many programs which have no stable models. For example, if
we have any program P and p is new statement letter, the program P plus the
clause p<- -ip has no stable model even if the original program P has a stable
model. Thus a single superfluous clause which may have nothing to do with
the rest of the program may completely destroy the possibility of the program
possessing a stable model. This is one of the reasons that researchers have
looked for alternatives to the stable model semantics such as the well-founded
semantics [VGRS91].

In this paper, we shall present a basic Forward Chaining type construction
which can be applied to any general logic program. The input of the construe-

tion will be any well-ordering of the non-Horn clauses of the program. The
construction will then output a subprogram of the original program and a
stable model of the subprogram. It will be the case that for any stable model
M of the original program P. there will be a suitable ordering of the non-Horn
clauses of the program so that the subprogram produced by our construction is
just P itself and the stable model of subprogram produced by our construction
will be M. Thus all stable models of the original program will be constructed
by our Forward Chaining construction for suitable orderings. Moreover, we
shall show that for finite propositional logic programs, our construction will
run in polynomial time. That is, we shall prove that our Forward Chaining
construction runs in order of the square of the length of the program.

In fact, a basic Forward Chaining (FC) construction can be applied to any
nonmonotonic rule system. In [MNR90,MNR92c], it was shown that nonmono-
tonic rule systems capture all the essential features of many nonmonotonic rea-
soning formalisms, including general logic programming with classical negation
[GL90], Reiter's default logic [Rei80], modal nonmonotonic logics of McDer-
mott [McD82] and truth maintenance systems of [Doy79,RDB89]. In the set-
ting of nonmonotonic rule systems, one can give general proofs for many of
the basic theorems about such nonmonotonic reasoning formalisms. Our For-
ward Chaining construction can thus be applied to any of these formalisms.
This can be done by translating a nonmonotonic system as above into a non-
monotonic rule system of [MNR90] and then writing an interpreter of such
a rule system within logic programming with stable semantics. The Forward
Chaining construction will then take any well-ordering -< of the nonmonotonic
clauses of a nonmonotonic system S = (U, N) and produce a subset C* of
nonmonotonic rules of S and a set D< C U which will be an extension of
the system (11,0*). Thus the results of this paper apply to all the systems
mentioned above.

We shall see that any stable model M of P can be produced via our Forward
Chaining construction for some well-ordering -<, i.e. every stable model of
P is a stable submodel of P. In the case where our original program P is
inconsistent in the sense that P has no stable models, we can view our Forward
Chaining construction as a way of extracting a maximal consistent subset of
clauses C* C P such that the system C* has stable model. As outlined above,
this feature of the Forward Chaining construction has a number of potential
applications. In particular, in the construction of expert systems, one often
consults several experts and the rules of different experts may conflict. Thus
the designer of the expert system is left with the task of extracting a consistent
set of rules from the rules supplied by different experts. We shall see that our
Forward Chaining construction is ideally suited to this task for it allows us to
favor the rules of one expert over another by the simple process of placing the
rules of our favored expert earlier in the list. Our results apply equally well
to the construction of extensions of default theories, answer sets for extended
logic programs, expansions of modal nonmonotonic theories or extensions of

truth maintenance systems.

We shall also analyze the complexity of our Forward Chaining construction.
We shall show that for general recursive program, we can always produce a
stable submodel which is r.e. in the jump of the empty set. 0'. Note that in
[MNR95], the authors constructed a recursive program system P such that P
has stable models but no hyperarithmetic stable models. Thus we are always
guaranteed that a recursive program has a stable submodel which occurs at a
relatively low level in the arithmetic hierarchy where no such guarantee can be
made for stable models of recursive programs even when such programs have
stable models. More importantly, we shall show that for finite programs, we can
always find a stable submodel and its corresponding subprogram in polynomial
time. Thus our Forward Chaining construction has potential applications for
real time systems.

The outline of this paper is as follows. In Section 2 we shall briefly review
the basic concepts of logic programming. In Section 3 we shall introduce our
Forward Chaining construction and prove several basic results about the con-
struction. In Section 4, we shall introduce recursive programs and recall some
basic results about such programs proved in [MNR92cj. Then we shall prove
our basic results about the complexity of the Forward Chaining construction.
In Section 5 we show how our construction can be modified and used to con-
struct stable models of systems possessing certain consistency property. In
Section 6 we show how our results of Sections 3 and 4 can be used for Default
Logic. In Section 7 we show how our Forward Chaining construction relates to
stratification of Apt. Blair and Walker [ABW87]. Finally in Section 8 we indi-
cate how our construction can be coupled with other constructions of models,
for instance the constructions of Fitting [Fi85,Fi98] or van Gelder, Ross and
Schlipf [VGRS91].

2 Some auxiliary information on logic programs

A definite logic program consists of clauses of the form

a <- al5... ,am

where a, ax,... ,am are atoms of some underlying language. We call such
clauses Horn program clauses or simply Horn clauses. The set of atoms occur-
ring in some clause of P is called the Herbrand base of P, and is denoted by
HP. We will be dealing here with the propositional case only.

Definition 2.1 A subset M C HP is called a model of a set of program
clauses P if for all clauses a <- au... ,am of P, ai,... ,am e M implies
ae M.

A general logic program consists of clauses of the form

C - a <- au... ,aro.-•&!.... .-iön. (1)

where a\,... ,am. b\,... ,bn are atoms of some underlying language. Here
ai,... ,an are called the premises of clause C, h,... ,bm are called the con-
straints of clause C. and a is called the conclusion of clause C. For any clause
C as in (1), we shall write prem(C) = {ai,... , an}, cons(C) = {61,... , ftm},
and c(C) = a. Either prem(C), cons(C), or both may be empty. If prem(r) =
cons(r) — 0, then the clause r is called an axiom.

Each Horn program can be identified with the a general program in which
every clause has an empty set of constraints.

Definition 2.2 A subset M C HP is called a model of P if for all C = a <-
ai,... , am^bi,... , -ibn G P, whenever all the premises ai5... . an of C are in
M and all the constraints &i,.... bm of C are not in M. then the conclusion
a of C belongs to M.

For general programs the set of models is not generally closed under arbitrary
intersections as in the monotone case. But models are closed under inter-
sections of descending chains. Since HP is model, by the Kuratowski-Zorn
Lemma, there is at least one model minimal among those containing / for any
I C HP.

Given sets M C HP and I C HP, an M-deduction of c from / in P is a finite
sequence (ci,... , c^) such that cfc = c and for all i < k, each Q either

(i) belongs to /. or
(ii) is the conclusion of an axiom, or

(iii) is the conclusion of a clause C G P such that all the premises of C are
included in {ci,... , Cj_i} and all constraints of C are in HP — M (see
[MT93], also [RDB89]).

An M-consequence of / is an element of HP occurring in some M-deduction
from /. Let CM(I) .be the set of all M-consequences of I in P. Clearly / is
a subset of CM(I)- However note that M enters solely as a restraint on the
use of the clauses which may be used in an M-deduction from /. A single
constraint in a clause in P may be in M and thus prevent the clause from
ever being applied in an M-deduction from /, even though all the premises
of that clause occur earlier in a deduction. Thus M contributes no members
directly to CM(I), although members of M may turn up in CM(I) by an
application of a clause which happens to have its conclusion in M. For a fixed
M, the operator CM(4) is monotonic. That is, if / C J, then CS{M) C CM(J).
Also, CM {CM (I)) = CM{I)- However, for fixed /, the operator CM {I) is anti-
monotonic in the argument M. That is if M' C M, then CM {I) Q CM>{I)-

Generally, CM{I) is not a model of P. It is perfectly possible that all the
premises of a clause be in CM{I), the constraints of that clause are outside

CM (I), but a constraint of that clause be in M. preventing the conclusion
from being put into CM{I)-

Example 2.1 HP = {a, b,c},P = {a <-,c <- a,->b}, M = {b}. Then
CM(0) = {a} is not a model of P. □

However, the following holds; see [MNR90].

Proposition 2.3 If M C CM{I), then CM(I) is model of P.

We say that M C HP is grounded in i" if A/ C CM{I)- We say that M C #P is
an siaö/e mode/ o/P over J of / if CM(I) = M. Finally, we say that M C HP

is a supported model of P over i" if CM(^ U R) = M, where R consists of
conclusions of those clauses C = a -f- ai,... , am, -i&i,... , -iftn £ P for which
ai,... , an G M, 6i,... , bm £ M. (Thus we are talking about models of Clark's
completion [Cla78], see also [AvE82].)

The notion of groundedness is related to the phenomenon of "reconstruction".
M is grounded in I if all elements of M are M-deducible from / (remember
that M influences only the negative sides of clauses). M is a stable model of
P over / if two things happen. First, every element of M is M-deducible from
I, that is, M is grounded in / (this is an analogue of the adequacy property in
logical calculi). Second, the converse holds: all the ^/-consequences of I belong
to M (this is the analogue of completeness). Thus stable models are analogues
for general programs of the set of all consequences for Horn programs, except
that the notion of derivability changes and is self-referring. Both properties
(adequacy and completeness) need to be satisfied if we want M to be a stable
model.

The third concept, supported model, is a closure property. In the process of
constructing CM (I), M is used only negatively as a restraint. But we can relax
our requirements and allow deductions that use M also on the positive side.
That is, elements of M are not treated as "axioms", but are used to generate
objects from HP by also testing the positive side of a clause for membership
in M. Thus, we get fixpoints of the operator TP and Clark's completion, see
[Apt90]. Gelfond and Lifschitz [GL88] proved that stable models of P are
minimal and supported. In particular, stable models of P form an antichain.
Moreover, it is easy to see that stable models of P over I are supported models
of P over /.

With each clause C of form (1), we associate a Horn clause of form (2)

C = a<r-au... ,am (2)

obtained from C by dropping all the constraints. The clause C is called the
projection of clause C. Let M be any subset of HP and let G(M, P) be the
collection of all M-applicable clauses. That is, a clause C belongs to G(M, P)
if all the premises of C belong to M and all constraints of C are outside of M.
We write P\M for the collection of all projections of all clauses from G(M, P).

The projection P\M is a Horn program. Our definition of stable model was
different from that given by Gelfond and Lifschitz in [GL88]. It is. however
equivalent to it. In particular we have the following.

Theorem 2.4 M C HP is a stable model of P if and only if M is the least
model of P\M-

For the rest of this paper, we shall only consider stable models over 0 unless
explicitly stated otherwise. We say that M is a stable model of P if M is stable
model of P over 0.

We shall end this section by giving yet another characterization of stable
models. For this we need the concept of a proof scheme. A proof scheme for
an atom c is a finite sequence

p = ((c0, C0, G0),... , (cm, Cm, Gm)) (3)

such that cm = c and
(1) If m = 0 then:
c0 is a conclusion of a clause

C = c0 <r- ->&!,... ,^bn

Co = C, and Go = cons(C).
(This includes the case when c0 is an axiom that is, when C is of the form

C = Co <-)•
(2) If m > 0, then ((q, ri} Gj))™ 0l is a proof scheme of length m and cm is a
conclusion of

C = Cm<r- Cio: ...Cis,->bi,... , -i&r

where iQ,... ,is < m. Cm = C. and Gm = Gm_i U cons(C).
The atom cm is called the conclusion of p and is written cln(p). The set Gm

is called the support of p and is written supp(p).

The idea behind this concept is as follows. An M-derivation for P. say p. uses
some negative information about M to ensure that the constraints of clauses
that were used are outside of M. But this negative information is finite, that
is, it involves a finite subset of the complement of M. Thus, there exists a
finite subset G of the complement of M such that for every set Mi C HP, as
long as G n Mi = 0, p is an Mi-derivation as well. Our notion of proof scheme
captures this fmitary character of M-derivation.

We can then characterize stable models of P as follows; see [MNR90].

Theorem 2.5 Let P be a general program. Then M is a stable model of P if
and only iff
(i) for each c G M, there is a proof scheme p such that dn(p) — c and
supp(p) n M = 0 and

(ii) for each c £ M, there is no proof scheme p such that cln(p) = c and
supp(p) n M = 0.

3 The Forward Chaining Construction and Stable Submodels

In this section we shall present our basic Forward Chaining construction which
can be applied to any general program P. We shall then establish several basic
properties of the Forward Chaining construction.

Given a general program P, we then let mon(P) denote the set of all Horn
clauses of P and nmon(P) = P \ mon(P). The elements of nmon(P) will be
called nonmonotonic clauses.

Our Forward Chaining construction will take as an input a program P and a
well-ordering -< of nmon(P). The principal output of the Forward Chaining
construction will be a subset D^ of HP. Although such subset is not, necessar-
ily, a stable model of P, it will be a stable model of .4^ for a subset .4^ C P.
This subset, A*, will also be computed out of our construction and will be
the maximal set of clauses of P for which D^ is a stable model. We thus call
D< a stable submodel of P.

The first feature of our construction is that in every stage of our construction
we will close the sets we construct under mon(P). The point is that stable
models are always closed under the operator associated with the Horn part of
the program, and the applicability of a clause from mon(P) is not restricted.
We shall denote by clmon the monotone operator of closure under the clauses
in mon(P). Thus clmon(I) = Tmon(P) t w(7) is the least set Z of atoms from
HP such that /CZ and Z is closed under every clause r of mon(P). That is,
if premises of such a clause are all in Z, then its conclusion also belongs to Z.
The second important aspect of our construction is that when we inspect the
clauses of nmon(P) for a possible application, we look at the possible effect of
their application on the applicability of those clauses which were previously
applied. Rules that may invalidate applicability of previously used clauses are
not used.

. The execution of this idea requires some book-keeping. Our Forward Chain-
ing construction will define two sequences of subsets of Ep\ (D^)^<\p\+ and
(R?)s<\p\+- D£ will be the set of elements derived by stage f. R£ will be the
set of elements restrained by stage £. Here and below a+ is the least cardinal
greater than a. Thus, if P is countable, then \P\+ is either finite or the first
uncountable ordinal. We shall prove, however, that if \P\ is countably infinite,
then the construction actually stops below the first uncountable ordinal and
therefore, for denumerable P, the use of nondenumerable cardinals can be
eliminated.

In addition, we shall define two sets of clauses, I* (for "inconsistent clauses")

and A* (for "acceptable" clauses). These sets of clauses will depend on pre-
viously defined hierarchies.

3.1 Forward Chaining Construction

We now introduce our Forward Chaining construction. This is done by trans-
finite induction in the most general case. Note that in case when HP is finite
our construction terminates in finite number of steps. In the infinite case the
situation is no different from induction used to in other areas of Computer Sci-
ence, e.g. Buchberger's construction of Grobner bases, where the algorithms
are performed on well-founded ordering of ordinal greater than ui, or Blair's
construction of the largest fixpoint for a definite program. We believe that the
area of logic programming is no exception. We shall prove below (Proposition
3.9) that if P is countable, then the stable models can be computed with or-
derings of type < UJ. Stable submodels, as introduced below, in general, do
not share this property.

Definition 3.1 Let P be a general program and let •< be a well-ordering of
nmon(P). We define two sequences of sets of atoms from HP, (D^) as well as
(R^). The set D^ is the set of atoms derived by stage £ and Rf. is the set of
atoms rejected by the stage f.

(i) DJ = c/mon(0), R$ = 0;
(ii) If 7 = ß + 1 and there is a clause C G nmon(P) such that

and

prem(C) C Dl, {{c(C)} U cons{C)) n ££ =

c/monW U {c(C)}) n {cons{C) U R$) =

(we call such clause applicable clause), then let Cy be the -«-first appli-
cable clause and set

DJ = clmon(Dj U {c(C7)}) RJ =R^U cons{C,).

If there is no C such that

prem{C) C DJ, ({c(C)} Ucons(C)) flD^ = 0

and

cUm W U {c(C)}) n (cons(C) U R$) = 0,

then set

Dj = D$ and Rj = R^

(iii) If 7 is a limit ordinal, then

Dj = U D* and R] = \J R*.
£<7 €<7

fiv) Finally let

£>« = D^|+ = U ££ and i^ = Rfa+ = U i£.
£<|P|+ Wl+

Sets D^ and R^ are sets of atoms derived and rejected during the forward
chaining construction along the well-ordering -<.

We define the set of inconsistent clauses. I*, and the set of consistent clauses,
A^, relative to ordering -< as follows:

5. C is inconsistent with -< (or simply inconsistent if -< is fixed) if prem(C)
eP^,({c(C)}Ucons(C))n£^ = 0, but clm0R(D^U{c{C)})n(cons(C)U
R<) ^ 0. /-< = {C G P : C is inconsistent with ^};

6. ^ = P \ /^

We then say that a subset D C PP is a stable submodel of P. if there is a
well-ordering -< of nmon(P) such that D = D*.

The following observations should be clear: First, the clause that is used for
construction of Dj+l from Dj is different from any clause used before in the
construction. Therefore, by cardinality argument, the construction, eventually,
stabilizes.

Next, both hierarchies (££) and (R£) are increasing. Moreover, it is easy to
prove by induction on f that DfnRf = Q>. Therefore D< n R^ = 0.

The sets R£ accumulate the restraints of all clauses applied during the con-
struction. Since D^ n R< = 0, the applicability of clauses applied during the
construction is preserved at the end. This immediately implies the following
result. First, let Pa = {Q : f < a}, P* = {Ca : a < \P\ + and Ca is defined}.
We have

Proposition 3.2 (i) D? is a stable model of P^
(ii) D< is a stable model of P*.

Proof: For (1), note that it is easy to see that our construction ensures that
cons(Ca) C P? for all a < £. It then follows that if

Ca = c f- ai,... , ak-<bi,... , ->bm,

then Ca = c <— ai,... , a* is a clause in the projection of P€ relative to Df,
P? 1^. But it is then straightforward to prove that D£ is the closure of 0 in

Pf l^ and hence D£ is a stable model of P$.

(2) follows from (1) since D< = Dfp]+ and P* = P|P]+. □

10

We now have a result showing that the set D^ we produced in the Forward
Chaining construction behaves as promised:

Theorem 3.3 Let P be a general program. Let -< be a well-ordering of the
set nmon(P). Then D^ is a stable model of A^. Hence if 1^ = 0, then D< is
a stable model of P.

Proof: We want to show that (7^(0) = D^ in the program A<. This requires
two lemmas.

Lemma 3.4 If x & DJ, then there is a sequence (xi,... , xn) such that xn = x
and for all i < n, either

(I) there is a clause C = X{ <- ->h,... , -*bn G A* such that {h,... , bn} n
L>^ = 0 or

(II) there is a clause C = Xi 4- xix,... , xik ->bi.... ,~^bn G A* such that
ii,...,ik<i and {&i,... , bn} fl D^ = 0.

Proof: We proceed by transfinite induction on 7.

Case 1:7 = 0. Then DJ = c/mon(0) so that if x G DJ, there is a sequence
{xi,... ,xn) with xn = x such that for all i < n, either there is a clause
C = Xi <- G mon(P) or there is a clause C = x{ <- xh,... ,xik G mon(P)
such that ii,... ,ik < i. Then (xi,... , xn) is our. desired sequence for x.

Case 2: 7 = 8 + 1. Assume the lemma holds for DJ. If DJ = DJ, there is
nothing to prove. Otherwise, there is a clause

C1 = c 4- ai,... , ap, -iei,.... -iem

such that d,... ,ap G DJ,eu... ,em G RJ and DJ = clmon(Dj U {c}).
Now suppose x G DJ. Then, since x G clmon(DJ U {c}), there is a sequence
(t/i,... , 2/n) with yn = -c such that either

(a) Vi G D£ U {c},
(b) there is a clause C = yi 4- G mon(P), or
(c) there is a clause C = yi^yil,... , yik G mon(P) such that ii,...,ik<i.

Now by induction, if a; G D^, there is a sequence {zf,... , zfx) such that for
all j < tx either

(i) there is a clause C = zj <- ->&i,... , ->bs G A~< such that {61,... ,bs}il
D^ = 0, or
(ii) there is a clause C = z{ <- zix,... ,zik-^bx,... , ~^bs G A< such that
{&!,... , &s} n D^ = 0 and ix,... , ik < j .

Now consider the sequence (2/1,... ,y„). For each yi; we shall define a se-
quence z% as follows: First suppose y{ satisfies Case (a). Then if yi G DJ,
we let wVi = (zf,... , zf.) as described above. If ^ = c, then we let wyi =
tüc = <^V-.,<\,...,^-.-,<.c>whereforeachj<n>(^>...>2£i>is

11

the sequence satisfying (i) and (ii) for x = a,j. Such a sequence (z^,... , zt
3

a)

exists because by the definition of C7. a,- G D£. We claim that the entire se-
quence wc satisfies conditions (I) and (II). Certainly each of the subsequences
(ztj,... , z%> satisfy (I) and (II). Xow

C7 = c f- ai,... , ap. —'ei,.... ^em G .4^

and {ei,...,em}c^C R< by construction. Thus {ex,... , em} n -D^ =0
since J?^ fl D^ = 0. Thus C7 shows that c satisfies condition (II) for wc.

Finally if y* satisfies Case 2(b) or 2(c). then we let wVi = (yi). It then follows
that if w is the concatenation of the sequences wyi.... ,wVn, then w satisfies
conditions (I) and (II) for x.

Case 3: 7 is a limit ordinal. Then if x G D* = {Jß^.D^, then for some
3 < 7,x G Dp. Thus by induction, there is a sequence (xi,... ,xn) satisfying
(I) and (II) for x. □

Note that Lemma 3.4 implies that D< C CD< (0) relative to A* To prove that
CD<{$) C £>"% we need only prove the following.

Lemma 3.5 Suppose (xu... , xn) is a sequence such that for all i < n, either

(I) there is a clause d = x{ f- ~bx.... , ~^bs G .4^ such that {h,... ,bs}C\
D< = 0 or
(II) there is a clause d = x{ <- xh.... ,xik-^bx.... , -^bs G A* such that

{&i,... ,bs} f~)D< = 0 andii,... .ik <i.

Then xn E D*.

Proof: We proceed by induction on n. We can thus assume that xx,... , xn-i
G D*. Hence there is some stage 70 such that xl5... . £n-i G D^Q . Now
suppose, for a contradiction, that xn £ D<. Note that at successor stages
7 = ß + 1 of our construction, if r7 is defined, then

r~ = c <- ai,... , an, ->&i,... ,->b. m

satisfies c g D^ and c G D^. It follows that if 71 7^ 72 are two successor
ordinals smaller than \nmon(P)\+ such that r7l and r72 are defined, then r7l ^
r72. Now by a cardinality argument, there must be a stage a > 70 such that a =
/3' + 1 is a successor ordinal and all clauses C such that C -< rn do not satisfy
the criteria to be ra. Thus at stage a,rn = xn <- xix,... ,xik,-<bi,... ,^bs

satisfies that {xh,... , xik} C ££, {a;n, bu ... , ftj n £$ = 0. Then the only
way that we would not pick ra = rn is either if xn G D^,, in which case we
are done, or if clmon{D^, U {xn}) n ({61,... , bs} U i$) # 0. But then clearly
clmon{D^ U {xn}) n ({fti,... , bsj U R<) / 0 which would mean rn G J^. But
by assumption rn G Ax = P - I*. Thus we must conclude that ra - rn and

12

hence xn G D^ C D< which contradicts our assumption that xn £ D*. Hence
xn G D^ as desired. O

Lemmas 3.4 and 3.5 imply the Proposition 3.3.

Note that our original definition of A* depends on both D^ and R*. This is
because I* depends on both D^ and R^. Since, however, D* is a stable model
of A<. it follows that whenever C G A*, then D^ is closed under C. That is,
if prem{C) C I)-*, then either cons(C) n D^ ^ 0 or c(C) G P>^. On the other
hand, whenever C e 1^ (that is C $ A*), then c(C) 0 D^, prera(C) C IT
but c/mon(D^ U {c(C)}) n cons(C) ^ 0 or dmon(P^ U {c(C)}) n P^ 0. In
this latter case clmon{D< U {c(C)}) D {HP \ D*) ^ 0. Therefore we get the
following characterization of A^ which depends only on D<.

Corollary 3.6 If P is a general program and -< is a well-ordering of of the
set nmon(P), then

A^ = {CeP: prem(C) £ D^ or clmon(D< U {c{C)}) n (HP \ D<) / 0}

In Section 5, we shall describe a set of programs P which we call FC-normal
programs which have the property that when the Forward Chaining construc-
tion is applied to P, I* is always empty. FC-normal programs were introduced
in [MNR93b]. FC-normal programs are guaranteed to have stable models.
These systems are generalizations of Reiter's normal default logic [Rei80]. The
properties of FC-normal program are proved in [MNR93b] so that in section
5, we shall simply give basic definitions and results of [MNR93b].

We define the set of nonmonotonic generating clauses for a set M C HP,
NG(M,P).

Definition 3.7 Let P be a general program. Let M C HP.

NG{M, P) = {C e nmon(P) : prem{C) C M, cons(C) n M = 0}

Thus NG(M, P) = G{M, P) n nmon{P).

Next we show the completeness of our construction, that is that every stable
model is a stable submodel.

Theorem 3.8 If P is a general program, then every stable model of P is a
stable submodel of P. That is, if M is a stable model of P, then there exists
a well-ordering ■< of nmon(P) such that D^ = M. In fact, for every well-
ordering -< such that NG(M, P) forms an initial segment of -<, D^ = M.

Proof: First of all notice that since M is a stable model of P, M is a supported
model of P. Thus it is generated from the conclusions of nonmonotonic gen-
erating clauses by means of monotonic clauses.

13

Next, let -< be a well-ordering of nmon(P) such that NG(M. P) forms an initial
segment of -<. Let 6 be the order type of -<. Then we can write nmon(P) as
nmon(P) = {na : a < 5}. By our assumption there is a 7 < <5 such that
NG(M,P) = {na : a < 7}. Let [i = 7+ and let {(DJ,RJ) : a e fi} be the
sequence constructed by the Forward Chaining construction for P relative to
the well-ordering -< . Then we claim that DJ = M.

First it is easy to show by induction that clmon(DJ) = DJ for all a. Next we
claim that if a < fi, then DJ C M and moreover if DJ ^ DJ+i, then ra+i = ne

for some 8 < 7, i.e., rtt+i G NG(M,P). That is. suppose by induction that
££ C M for all /3 < a. Then if a is a limit ordinal, DJ = U/3<a £3 C Af. If
a is a successor ordinal, we can assume by induction that a = r\ + 1 where
D^ C M and that rß G NG(M, P) for all ß < a such that rß is defined. Since
773 G NG(M, P), we know that cons(rß) n A/ = 0. But RJ = \Jß<v cons(rß) so
that RJnM = 0 as well. Now consider D^. If D^ = M, then for any clause r =
c <- ai,... . an, -161,... ,bm either {ai,... , an} <g M or {c, &i,... , 6m} n M ±
0 since A'/ is a stable model. But this means that r^+i must be undefined so
that DJ = DJ = M. If DJ C Af, then consider some a G A/\Z^. Since a G M,
there is some minimal proof scheme p = {(a0, f0, Go), • • • , (am, rm, Cm)} where
am = a and Gm D Af = 0 which witnesses that a G M. Since a £ DJ, there
must be some A; < m such that a0,. • • , afc_i G DJ and ak £ DJ. Then consider
ft = afc «- a,-0,... , afj., -i&i,... , ->&t where i0,... ,ij < k .

Now it cannot be that {&i,... , 6t} = 0 since otherwise afc G clmon(DJ) = DJ.
Thus {&i,... . bt] £ 0. But since {bu ... ,bt}CGm and GmnM = 0, it must
be the case that {61,... , bt} D Af = 0 so that certainly {A,... , 64} n D^ = 0.
Moreover, L>^ U {afc} C M so that clmon(DJ U {afc}) C Af. Also ({&ls... , ftj U
i^) n Af = 0 so that clmon(DJ U {ak}) n ({&i,.. • , ft*} U RJ) = 0. Thus f*
is a candidate to be rQ at stage a. But rk G NG(M,P) so that f* = nfl

for some 9 < 7. Hence by construction ra = nx for some A < 6 < 7. Thus
rQ G NG(M.P) and cZn(Vtt) G Af. But this means DJ U {c/n(rQ)} C M so
that ££ = clmon(DJ U {c/n(ra)}) C Af.

It follows that DJ C Af. That is, /i is a limit ordinal so that DJ = \Jaefl DJ
and we have proved DJ C Af for all a G //. We claim that it must be the
case that DJ = Af for otherwise D^ C M and hence for all a e n,DJ C M.
But our argument above shows that if DJ C M, then ££ C DJ+l, and
rQ+1 G NG(M,P). This fact, in turn, will allow us to prove by induction on
the length of a minimal proof scheme that for all r G NG(M, P), cln(r) G DJ.
That is, suppose p = cln(r) for some r G NG(M, P). Now since p G Af, there is
a minimal proof scheme p = ((aQ,r0,Go),... ,{am,rm,Gm)) where GmnAf = 0
and am = p. Now we can assume by induction that if c is the conclusion of
a minimal proof scheme q such that supp(q) C\ M = 0 and the length of
q < m, then c £ DJ. Thus we can assume a0,... ,am-i are in D^. Hence
there is some a < (i such that {a0,... ,am_i} C DJ. Then consider fm =
p^ah,... :ait,->&i,... ,-iftt where ij,... ,ifc < m. Since {a^,... ,o,J C D^

14

and {bi,... , bt} D M ^ 0, it will follow that for all ß such that p g D^ and
a < ,8 < /A, fm is a candidate to be r^-i at stage 3. Now fm = nx for some
A < 7. Thus at such at stage ß, it must be the case that either re+\ = n\ = fm

or r^+i = ng for some 9 < X. Moreover if ß\ ^ ß2 and f^ and fg., are defined,
then we have previously observed that r^ ^ rg2. If follows that because JJL is
cardinal and hence card({n6 : 9 < A}) < card(fi), there must be a stage /?
such that a < ß < n and either p G D^ or fm = r^+i In either case, p will
be in Z£+1 C ££. It follows that {cZn(r) : r e NG(M,P)} C D^ C M. But
then M = c/mon({dn(r) : r e <VG(A/,P)}) C clm0Xi{D<) = D< C .V. Thus
D,? = M as claimed.

Now if yu = |P|+, then D* = D^ = M. If // < |P|+, then we know that
Dß = M. But by our observation above, whenever Da = M, rQ+i is undefined.
Thus r^+i is undefined and hence D* = L£ = il/ for all // < a < |P|+. Thus
in either case D* = M. n

Next, we shall consider some examples.

Example 3.1 Let HP = {a, b, c. d. e. /} and let P consist of the following-
clauses:

(i) at-
(ii) b <- c

(iii) c ■*— a, -id

(iv) d <— &, ->c
(v) e <- c, -./

(vi) / <- c, ->e

Here, mon(P) consists of clauses (1) and (2), whereas nmon(P) consists of
clauses (3), (4), (5), and (6).
Let -< of nmon(P) be defined as (3) -<: (4) -< (5) -< (6). Then the construction
of sets D^ and i?^ is as follows:
Stage 0 D$ = dmon(0) = {a}, itf = 0.
Stage 1 n = (3), D{< = clmon({a] U {c}) = {a, 6. c}, Ä? = {d}.
Stage 2r2 = (5), 1?^ = {a, b, c, e}, and R£ = {d, /}.
Stage 3 At this stage our construction stabilizes.
It is easy to see that I* — 0 so D^ = D£ is an stable model of P.

Now, let -<' be an ordering of nmon(P) as follows: (4) -<' (3) -<' (6) -<' (5).
Here, the construction of D^' produces these stages:
Stage 0 D? = c/mon(0) = {a}, Rf = 0.
Stage 1 n = (3), D?' = cZmon({a} U {c}) = {a, b, c}, Ä?' = {d}.
Stage 2 r2 = (6), ££' = {a, b, c, /}, and R£' = {d, e}.
Stage 3 At this stage our construction stabilizes.
Again, it is easy to see that I*' = 0 so D*' = Df' is a stable model of P. These
are the only stable models of P and the construction with any well-ordering
will produce one of these. n

15

Let us look at another example.

Example 3.2 Let HP = {a. b. c. d, e) and let P consist of the following-
clauses:

(i) a*-
(ii) e <-b

(iii) c <— d
(iv) d «— a, ->b
(v) b <— a, -id

(vi) d <- e,-<c
(vii) 6 •f- c, ->e

Here, mon(P) consists of clauses (1), (2) and (3), whereas nmon(P) consists
of clauses (4), (5), (6), and (7).
Let -<; of nmon(P) be defined as (4) -<; (5) -< (6) -< (7). Then the construction
of sets D^ and R£ is as follows:
Stage 0 D< = c/mon(0) = {a}. RJ = 0.
Stage lr1 = (4), D? = dmon{{a} U {d}) = {a,c:d}, Rf = {b}.
Stage 2 r2 is undefined and the construction stops at this stage. Hence
D< = D? = {a. c, d}. We check that I* consists of the clause (7). .4^ consists
of clauses (l)-(6). Thus {a, c, d) is a stable model of (l)-(6) but not of (l)-(7).

Now, let -<' be an ordering of nmon(P) as follows: (7) -<' (6) -<' (5) -<' (4).
Here, the construction of D*' produces these stages:
Stage 0 D? = c/mon(0) = {a}. R$' = 0.
Stage 1 n = (5), £>{<' = clmon({a} U {b}) = {a, b. e}, ÄJ< = {d}.
Stage 2 r2 is undefined and the construction stops at this stage. Hence D^ =
D<' = {a, b, e}. We check that I<! consists of the clause (6). A*' consists of
clauses (l)-(5) and (7). Thus {a. c, d} is a stable model of (1) - (5), (7) but not
of (1) — (7). In fact, it is easy to check that in any well-ordering of nmon(P),
either clause (4) or clause (5) will be riand hence {a, b, d} and {a, b. e] are the
only two stable submodels of P. Thus P has no stable models. This example
shows that while P is inconsistent, P has two maximal subprograms which
are consistent. n

. While we stated Theorem 3.3 and Theorem 3.8 in full generality, we are most
interested in the case when program P is finite or countable. In this case we can
show that to construct stable models via forward chaining, one need consider
orderings of type smaller or equal of order type to. So let us assume that
|P| < to. Note that it follows easily from Propositions 3.8 that it is enough to
consider orderings of type < co + u. For in this case NG(M, P) can be ordered
in type < w and similarly nmon(P) \ NG(M, P) can be ordered in type < to.
But it turns out that, actually, only the orderings of type < to are needed.

Proposition 3.9 Let P be a program such that \Hp\ < u and let M be a
stable model of P. There exists a well-ordering -<' of nmon(P) in type < u

16

such that D<: — M. Moreover the forward Chaining construction stabilizes in
at most to steps.

Proof: Consider NG{M,P). If NG{M,P) is finite, then let -< be an ordering
of nmon(P) of order type u such that the set of clauses in NG(M, P) form
an initial segment under -< . Such an ordering -< must exist since nmon(P) is
countable and NG(M, P) is finite. Then our proof in Proposition 3.8 shows
that in the Forward Chaining construction with respect to -<,D* = A4 =
D<. Now if NG{M, P) is infinite, let nQ,nu... be a list of NG{M, P) and
do, di,... be a list of nmon(P) - NG(M, P). Let -<i be the well-ordering of
nmon{P) defined by n0 ^i ni ~<i ... -<x d0 -<i di -< Again our proof of
Proposition 3.8 shows that D^ = \Jnew D^1 = M. Since M is a stable model,
it follows that for each clause dn = cn <- <,..., a£n, -.&?,... ,->&£ either
{a?, ...,a;}p/or {6?,... . b?n} D M ^ 0 by our definition of NG(M, P).
Then define T(dn) = n if {a?,..." a^} £ M and T(d„) to be the least m>n
such that {&?,... ,&?„} n D^1 ^ 0 otherwise. Clearly T(dn) is defined for
all n. Next let tf(n) "= 1 + max{fc : nfc = r5- for some j < n} where rj
is the clause defined at stage j of our Forward Chaining construction with
respect to -<i . Finally for each n > 0. define the rank of dn, rank(dn), by
rank(dn) = tf(r(dn)). The significance of the rank of dn is that we can insert
dn into the list n0,ni,... , at any point after nrank(dn) and remove it from
the list d0, di,... , to form a new ordering -<2- Then if we run the Forward
Chaining construction with respect to -<2, the first r(dn) steps of the Forward
Chaining construction with respect to -<2 will be identical with the first r(d„)
steps of the Forward Chaining construction with respect to -<i . That is,
our definition of d ensures that the first r(dn) steps of the Forward Chaining
construction with respect to -<x depends only on clauses n0,... , n^T{dn))- Thus
since n0, •. • ,n^r(dn))

also are the first ! + ^(r(dn)) clauses with respect to
-<2, the first T(dn) steps of the Forward Chaining construction with respect to
<2 will stay the same as in the Forward Chaining construction with respect
to <i .

Hence D^L \ = D^Ly But our choice T(d„) ensures that either

or
{a^-.^aDZM.

It follows that the insertion of dn into the list n0, ni,... does not effect any step
of the Forward Chaining construction up to stage u. Thus we can conclude
££i = D^2 = M. But then since M is a stable model, ru+i must be undefined
in both the Forward Chaining constructions with respect to -<x, and -<2 and
hence D<2 = D<x = M. Note that our definition of rank(dn) ensures that for
any given rank k, there are only finitely many clauses dn such that rank(rn) =
k. Now construct a new list of the elements of nmon(P), a0, ax,... , by starting
with the list n0,ni,... and then inserting all the clauses dn of rank k, say in

17

increasing order with respect to -<i, between nk and nk+\. Then if -< is the
well-ordering of nmon(P) defined by a0 -< a\ -< ... it follows by our arguments
above that in the Forward Chaining construction with respect to -<. DJ = DJ1

for all nC'uj. Thus D< = DJ = M as desired. □ U)

We note that Theorem 3.9 does not hold for all stable submodels. That is. the
sets D^ which are not stable models may have the property that they can only
be obtained by means of orderings of the length > u>. Moreover, in opposition
to stable models, stable submodels do not form an antichain.

Example 3.3 Let HP = {a, : i < Lü} U {k : i < co} U {c, : i < u} U {p}. Let
P consist of the following clauses:

(i) qi = ^ <- ai,... , a;_i, ->bi for i > 1 (thus ql = ai<r- ->&i);
(ii) Si = bi <- ai, -IQ for i > 1;

(iii) q0 = a0 <- ->&o;
(iv) U = üi <— a0 for i > 1;
(v) u = p <— -ip.

Clearly, P has no stable model. Now, order the clauses in nmon(P) as follows:

<?i -< q2 -< ...<?o -< si -< s2 ... -< u

It is easy to see that D< = {a* : i e to}, R^ = {bi : i € a;}, and .4^ =
{<7o, qi,ti, <?2, *2, ■ • • }• However we claim that if —<i is an ordering of P of order
type to, then D<1 must contain at least one ftj. This implies that {ßj : i G w}
is not equal to D<x where -<i is of order type to. That is, suppose that n0 -<i
ri\ -<\ n2 -<i • • • is an ordering of P of order type w. Not that since b0 is not
the conclusion of any clause in P, at any stage k, q0 is a candidate to become
rk. Since n(= q0 for some I, it follows that for some k < I + I, rk = q0 and
hence

D? = cUoniD^ U {a0}) D{ai:ieuj}

Since Rk
x is finite, infinitely many of the clauses s* are applicable at stage k+1.

However none of the clauses g, are applicable at stage k + 1 since a, G .D^1

for all i E to. Thus rk+x = Sj for some j and hence fy G DJli C DXl. (In fact,
it is easy to see that all but finitely many bj will be in D<x.) □

Our construction of the set D< persists with respect to prolongation of the
well-ordering (providing the Horn part is the same).

Proposition 3.10 Let P C P' be two sets of clauses such that mon(P) —
mon(P'). Let -<' be a well-ordering of nmon(P') and let nmon(P) be an initial
segment in -<'. Finally, let -«=-<' |P. Then D^ C iK and R^ C R*'.

Proof: Let a be the least ordinal n such that DJ = DJ+l. Let a' be the least
ordinal r) such that DJ' = Dj'+l. It is straightforward to prove by induction on

18

£ < a that r? = rp and. consequently, D^ = D^ and R^ = R^ . This implies

that L>^ = U?<Q Df = U?<Q £>/ and so a < a1. Thus D* C Uf<a' ££' = ^'-

Similar argument shows that R< C R< . D

Our argument shows that if one ordering is a prolongation of another, then all
the clauses applied in the construction along the smaller well-ordering have
also been used in the construction along the longer well-ordering. But what
happens with the remaining clauses, those in nmon(P) \ NG(P,D<)? These
consist of two types of clauses: inconsistent clauses and clauses unused in the
construction. Inconsistent clauses may become unused. This will happen, for
instance, if their conclusion is also a conclusion of another clause used later in
the construction. The clauses unused in the construction along -<; may become
inconsistent or remain unused.

Example 3.4 Let P consist of r0 = p f-. n = t <- p, ->q and r2 = q f- s, -r.
Let ri -< r2. It is easy to check that D^ = {p, t), R< = {<?}, and I* = 0. Next,
let P' = PU {r3} where r3 = s <- -<w. Let rx -<' r2 <' r3.

Again it is easy to check that D^' = {p,t. s} and R^' = {q,w} so that now
r2 e I*'. " °

Example 3.5 Let P consists of a clause r = p _«- ->p only. Then with the
trivial well-ordering of P the clause r is inconsistent. But when we add a
clause r' = p «— ->g, then, in the construction along any ordering -<;, r becomes
unused. D

In our presentation we treated our Horn clauses in "absolute fashion". In
particular we always took the closure dmon under all the clauses in mon(P).
In every step of the Forward Chaining construction we took care of making
sure that every level is closed under all the Horn clauses. This does not have to
be the case. That is. in a specific application we can treat some Horn clauses
as "nonmonotonic clauses without restraints". Specifically, let R C mon(P).
Then we can associate with R a monotonic operator CIR(-) of closure under
the clauses in R. Since R C mon(P), all the nonmonotonic clauses belong to
P\R. Let -< be a well-ordering of P \ R. We can now execute the Forward
Chaining construction with respect to -<. If the set of clauses I* is empty
then, as before, we get a stable model of P. When 1^ is nonempty it may
contain monotonic clauses in mon(P) \ R.

Example 3.6 Let HP = {a,b,c,d,e}. Let P = {ri,r2,r3,u,r5} where n =
b <- a, r2 = a <r-, r3 = c <- b, r4 = d <— ->c, r5 = / <- d->f.

Here, mon(P) = {ri,r2,r3}. c/mon(0) = {a,b,c}, the clauses ri:r5 are unused
under any well-ordering and the only set computed here is {a, b, c} which is
an stable model of P. But with R — {n, r2} and an ordering -< in which the
clause r3 follows the remaining clauses then the Forward Chaining construction
produces another set. That is D< = {a,b,d}, R~* = {c} and the clauses r3

19

and r5 become inconsistent. □

It should be clear that this variant of the Forward Chaining construction
generalizes the original Forward Chaining construction. In particular, all the
sets D^ constructed with the well-orderings of nmon(P) can be constructed
with the well-orderings of P \ R (for any R C mon(P)). Specifically, the
orderings of P \ R in which mon(P) \ R forms an initial segment have this
property.

4 Complexity of Stable Submodels

In this section, we study the complexity of the Forward Chaining construc-
tion for finite and recursive programs. We begin this section with the basic
definitions of recursive programs and recall some of the basic results on the
complexity of stable models of recursive programs as proved in a series of our
earlier papers [MNR90,MNR92c,MNR92a].

4-1 Preliminaries

Let u denote the set of natural numbers. The canonical index, can(X), of
finite set X = {xx < ... < xn) C u is defined as 2Xl + ... + Tn and the
canonical index of 0 is defined as 0. Let Dk be the finite set whose canonical
index is k, i.e., can(Dk) = k.

We shall identify a clause r with a triple (k,l,ip) where Dk = prem{r), and
Di = cons(r), ip = c(r). In this way. when HP C u we can think about P as a
subset of uj as well. This given, we then say that a program P is recursive if
HP and P are recursive subsets of a;.

Next we shall define various types of recursive trees and n° classes. Let [,]: u x
to ->■ UJ be a fixed one-to-one and onto recursive pairing function such that the
projection functions'7Ti and 7r2 defined by iri([x, y\) = x and ir2([x, y\) = y are
also recursive. Extend our pairing function to code n-tuples for n > 2 by the
usual inductive definition, that is, let [xu ... , xn] = [xx, [x2,... , xn]] for n > 3.

' Let co<u be the set of all finite sequences from to and let 2<u be the set of all
finite sequences of O's and l's. Given a = («i,... , an) and ß = (ßi,... , ßk) in
io<u!, write a Q ß if a is initial segment of/?, i.e., if n < k and a{ = ßi for i < n.
In this paper, we identify each finite sequence a = (cti,... , an) with its code
c(a) = [n, [ax,... , an}] in to. Let 0 be the code of the empty sequence 0. When
we say that a set S C u)<u} is recursive, recursively enumerable, etc., what
we mean is that the set {c(a): a G S) is recursive, recursively enumerable,
etc. Define a tree T to be a nonempty subset of LU

<U
 such that T is closed

under initial segments. Call a function /: u -> UJ an infinite path through T
provided that for all n, (/(0),... , /(n)> G T. Let [T] be the set of all infinite

20

paths through T. Call a set A of functions a üj-class if there exists a recursive
predicate R such that A ='{/: u ->• w : Vn(-R(n, [/(0).... ,/(n)])}. Call a
n°-class A recursively bounded if there exists a recursive function g: JJ -^ UJ

such that V/ G AVn(/(n) < #(«))• It is not difficult to see that if A is a
ITj-class, then A — [T] for some recursive tree T C u;<UJ. Say that a tree
T C w<u is highly recursive if T is a recursive finitely branching tree and
also there is a recursive procedure which, applied to a = (a\,... ,an) in T,
produces a canonical index of the set of immediate successors of a in T. Then
if A is a recursively bounded n°-class. it is easy to show that .4 = [T] for
some highly recursive tree T C UJ

<UJ
, see [JS72b]. For any set A C u, let

A' = {e: {e}A{e) is defined} be the jump of .4, let 0' denote the jump of the
empty set 0. We write A <T B if A is Turing reducible to B and A =T B if
A <T B and B <T A.

We say that there is an effective, one-to-one degree preserving correspondence
between the set of stable models Stab(P) of a recursive programs P and the
set of infinite paths [T] through a recursive tree T if there are indices ex and
e2 of oracle Turing machines such that
(i) V/6m{ei}"-<» = Mf € Stab(P),
(ü)Vv/GÄa6(P){e2}M = /Me[T],and

(iü) ^MT^MeStab{P)(M
9rU) = M if and °^ if M" = /)•

where {e}B denotes the function computed by the eth oracle machine with
oracle B. Also, write {e}B = A for a set .4 if {e}B is a characteristic function
of A. For any function f:u -+v, gr(f) = {[re, /(z)]: x <E a;}. Condition (i)
says that the infinite paths of the tree T uniformly produce stable models
via an algorithm with index t\. Condition (ii) says that stable models of P
uniformly produce infinite paths through T via an algorithm with index e2.
Condition (iii) asserts that if {ex]

9r^) = Mf, then / is Turing equivalent to
Mf. In the sequel we shall not explicitly construct the indices ex and e2, but
it will be clear that such indices can be constructed in each case.

We shall use now the concept of a proof scheme (see Section 2) to define two
important classes of programs. We depart from the fact that there is a natural
preordering of proof schemes. We define, for proof schemes Si, s2, sx < s2 if
both si, s2 have same conclusions and every clause appearing in s\ appears in
s2. Although <C is not a partial ordering, it is well-founded. Thus for every
proof scheme s there is a ^-minimal proof scheme s\ such that s\ <C s.

There are two important subclasses of recursive programs introduced in our
paper [MNR92a], namely locally finite and highly recursive programs. Say that
the program P is locally finite if for each c e HP, there exist only finitely many
<-minimal proof schemes with conclusion c. If P is locally finite, then for every
c, there exists a finite set of derivations Drc such that all the derivations of c
are inessential variants of the derivations in Drc. That is, if p is a derivation of
c, then there is a derivation pi G Drc such that pi -C p. Finally, say that P is
highly recursive if P is recursive, locally finite, and the map c >->■ can(Drc) is

21

partial recursive. The latter means that there is an effective procedure which,
when applied to any c € HP, produces a canonical index of the set of all
<C-minimal proof schema with conclusion c.

This given, we can now state some basic results from our earlier papers
[MNR90,MNR92c,MNR92a] on the complexity of stable models of recursive
programs.

Theorem 4.1 For any highly recursive program P. there is a highly recursive
tree TP such that there is an effective 1:1 degree preserving correspondence
between [TP] and Stab(P). Vice versa, for any highly recursive tree T, there
is a highly recursive program PT such that there is an effective 1:1 degree
preserving correspondence between [T] and Stab(Pr).

Theorem 4.2 For any locally finite recursive program P, there is a tree TP

which is highly recursive in 0' such that there is an effective 1:1 degree preserv-
ing correspondence between [TP] and Stab(P). Vice versa, for any highly recur-
sive tree T inO', there is a locally finite recursive program PT such that there
is an effective 1:1 degree preserving correspondence between [T] and Stab(PT)-

Theorem 4.3 For any recursive program P, there is a recursive tree TP such
that there is an effective 1:1 degree preserving correspondence between [TP]
and Stab(P). Vice versa, for any recursive tree T, there is a recursive program
PT such that there is an effective 1:1 degree preserving correspondence between
[T] andStab{PT).

Because the set of degrees of paths through trees have been extensively studied
in the literature, we immediately can derive a number of corollaries about the
degrees of stable models in recursive programs. We shall give a few of these
corollaries below.

For recursive programs, we have the following results, see [MNR92a].

Corollary 4.4 (i) Every recursive program P, which has a stable model, has
a stable model M such that M <T B where B is a complete U\-set.

(ii) If P is a recursive program with a unique stable model M, then M is
hyper arithmetic.

Corollary 4.5 (i) There is a recursive program P such that P has a stable
model but P has no stable model which is hyper arithmetic.

(ii) For each recursive ordinal a, there exists a recursive program P possessing
a unique stable model M such that M =T 0^a'.

These two corollaries show that the stable models of a recursive program
may be very complex. We shall see in the next section that in contrast, there
is always at least one stable submodel of a recursive program which occurs
relatively low in the arithmetic hierarchy, namely there will always be a stable
submodel which is r.e. in 0'.

We note that there are natural conditions which will guarantee that the set

22

of stable models of a program are much better behaved. For example, if the
program is highly recursive, then we have the following results, see [MNR92a].

Call A low if A' =r 0'. This means that A is low provided that the jump of A
is as small as possible with respect to Turing degrees. The following corollary
is an immediate consequence of Theorem 4.1 and the work of Jockusch and
Soare [JS72b].

Corollary 4.6 Let P be a highly recursive program such that Stab(P) ^ 0.
Then
(i) There exists a stable model M of P such that M is low.
(ii) If P has only finitely many stable models, then every stable model M of
P is recursive.

In the other directions, there are a number of corollaries of the Theorem 4.1
which allow us to show that there are highly recursive programs P such that
the set of degrees realized by elements of Stab(P) are still quite complex.
Again all these corollaries follow by transferring results of Jockusch and Soare
[JS72b,JS72a].

Corollary 4.7 (i) There is a highly recursive program P such that P has
2Ko stable models but no recursive stable models,

(ii) There is a highly recursive program P such that P has 2K° stable models
and any two stable models Mi ^ M2 of P are Turing incomparable.

(Hi) There is a highly recursive program P such that P has 2N° stable models
and if a is the degree of any stable model M of P and b is any recursively
enumerable degree such that a <T b, then b =T 0'.

(iv) If a is any recursively enumerable Turing degree, then there is a highly
recursive program P such that P has 2N° stable models and the set of
recursively enumerable degrees b which contain an stable model of P is
precisely the set of all recursively enumerable degrees b >T a.

Finally, we note that there are analogues of Corollaries 4.6 and 4.7 which hold
for recursive locally finite general programs. That is, one can replace highly
recursive general programs by recursive locally finite general programs if one
replaces all the statements about degrees of stable models by the corresponding
statement relative to an 0' oracle. For example, the analogue of part (1) of
Corollary 4.6 is that every recursive locally finite general program P such that
Stab(P) ^ 0 has a stable model M such that M is recursive in 0", while the
analogue of part (1) of Corollary 4.7 is that there exists a recursive locally
finite general program P which has 2*° stable models but which has no stable
model which is recursive in 0'. See [MNR92c] for further details.

23

4-2 Complexity of the Forward Chaining Construction.

In this section we discuss complexity issues for sets of the form D<, where P
is a recursive program and -< is either some ordering of type to or some finite
ordering. First of all, recall that every stable model of P can be obtained as
D< for a suitably chosen ordering -<. This means that, since the stable models
can be very complex, even if there is only one stable model, we cannot ob-
tain results on complexity of D< without restricting the class of orderings. As
noticed above there are recursive programs P such that P possess a unique
stable model but that stable model is as high in the hyperarithmetical hier-
archy as desired. Therefore we shall put now the restriction on the order type
of -<. This restriction is related to the fact that in any attempt to implement
even a partial construction of D*. we cannot go beyond to. Moreover, UJ (and
finite ordinals) have the following property:

Lemma 4.8 Let P be a program and let -< be a well-ordering of nmon(P)
of order type < us. Then the closure ordinal of the construction of the family
(Dp) is at most x.

Proof: Our lemma is obvious for the case of finite nmon(P). Hence assume
that nmon(P) is infinite. If the closure ordinal of the construction of D<

is greater than JJ. then D£+1 ^ DJ and in particular r^ is defined. Then
c(ru) i DJ, premie) C DJ, (cons^URJ) n (clmon(DJ U {c^)}) = 0. Let
{sk : k G LO} be the enumeration of nmon(P) in the order -<. Then for some
k e Lü, rw — sk. Since k is finite, there must be a natural number / satisfying
the following conditions:

(i) prem(rw) C DJ:
(ii) For all j < k if C(SJ) G ££, then C(SJ) G Df.

Selecting least / with these properties we see that ri+i = rw, which is a con-
tradiction. n

It is easy to see that the property indicated in Lemma 4.8 does not hold for
ordinals greater than u.

Example 4.1 Let HP = {an : n G to} U {bn : n G to} U {c,d}, let P =
. {Co, Ci, E0, Ei,E2,...} where C0 = c <r- -id, Cx — ax <- c, -<d, E0 = a0 ±-
and Em - am+2 •<- am,-i&m, m > 1. Let -< be the ordering on nmon(P)
defined by rx -< r2 -< ■ ■ ■ ■< qo -< qi- Then -< is an ordering of the type to + 2.
But it is easy to see that with this ordering the construction of D< will take
precisely u + u steps. In the first step we compute a0, then at the step n we
add a2n. At the step to we add c, at the step co + 1, ax and at each step co + n,
a2n+\. Finally, at the stage u + ui construction closes. ü

We shall restrict our attention now to the case when P is recursive and -< is
a recursive well-ordering of type to.

24

Proposition 4.9 Let P be a recursive general program. Let -< be a recursive
well-ordering of nmon(P) of order type < u). Finally, let D^, R^.I^, and A^
be sets of atoms and of clauses defined in Definition 3.1. Then:

(i) D< is r.e. in 0'.
(ii) R^ is r.e. in 0'.

(Hi) Jx is recursive in 0".
(iv) A~* is recursive in 0".

Proof: Clearly, mon(P) and nmon(P) are recursive sets. Since mon(P) is re-
cursive it follows that for any r.e. set M C HP, clmon(M) is also r.e. In fact
it is uniform, i.e. we can find a recursive function / such that for a set We,
c/mon(We) = JV)(e).

The closure ordinal of the construction of the sets D£ (and thus R£) is at
most u) (by Lemma 4.8). It is easy to see that each Rf is finite. As concerns
Df, each of these sets is r.e.. as is easily proved by induction.

If we end up in a finite number of steps, say n, then it follows that D^ is r.e.
and R* is finite. Thus certainly D< is r.e. in 0', and similarly for R^.

If the closure ordinal of our construction is exactly w, we are dealing with two
sequences:

DfCDfC...

RjCRfC...

The first sequence consists of r.e. sets, the second of finite sets. Now we want
to evaluate the complexity of union of each hierarchy. To this end let us notice
that with an 0' oracle, we can effectively find rn, and so we have a function h.
recursive in 0', such that D^ = Wh(n). Then, we can write:

xeD^ = 3nxe Wh(n)

or equivalent ly

xeD* = 3n3k(k = h(n)Ax e Wk)

Since h is recursive in 0', D^ is r.e. in 0'.

A similar argument is used for item (2), except that instead of We we con-
sider an enumeration of finite sets. The complexity does not lower, since the
existential quantifier in front is still there, and the function that produces the
canonical index of R*+l out of i?^ is recursive in 0'.

Finally, given the 0" oracle we can decide the question of membership of
elements in sets r.e. in 0'. In particular we can decide if prem(r) C D<, and

25

if c/mon({c(r)} U £>K) n (cons(r) U R*) ^ 0. Thus I* is recursive in 0". and
hence A* is recursive in 0" as well. □

Corollary 4.10 If P is a recursive program such that nmon(P) is finite, then
for any ordering -< ofnmon(P), D^ is r.e., R* is finite, and I* is finite and
A^ is recursive. n

We shall now define a class of programs for which stronger results can be
obtained.

Definition 4.11 Let P be a recursive program. We say that P is monotoni-
cally decidable if

(i) For every finite A C HP, dmon(A) is recursive;
(ii) There is a recursive function / such that given a canonical index k, f(k)

is an index of a partial recursive function ipk such that (pk is the charac-
teristic function of c/mon(Ac)-

Notice that this concept depends only on the monotonic part of the program
P. The idea here is that we can find the characteristic function of clmon(A)
uniformly in A. For example, if mon(P) is finite, then P is monotonically
decidable.

If the program P is monotonically decidable we can strengthen Proposition
4.9 considerably.

Proposition 4.12 If P is a recursive monotonically decidable program and
-< is a recursive ordering of nmon(P) of type < to, then

(i) If nmon(P) is finite, then D^ is recursive and A* is recursive (and I*
and R~* are finite),

(ii) If nmon(P) is infinite, then D^ and R< are r.e. and I* and A* are
recursive in 0'.

Proof: Since P is monotonically decidable, D* is recursive for every n. Indeed,
the operator c/mon is monotone, finitizable and idempotent and therefore D^ =
dm0n{{c(rj) : j < n,.rj defined}.

Moreover, our assumption that -< is effective means that we can search the
list nmon(P) effectively to see if there is a clause r such that prem(r) C D£,
(cons(r) U {c{r)}) n DJ = 0 and dmon{Dj U {c{r)}) n (cons(r) U i£) = 0.
This implies that if rn+i exists we can effectively find it.

Thus, as in the proof of Proposition 4.9 either for some n, D^ = D^+1 and so
D£ = D^ (and in this case D^ is recursive and R^ is finite) or the construction
closes at u and we are dealing with an effective sequence of recursive sets

DJ C DJ C ££

26

and an effective sequence of finite sets

Ro — 1 — 9 ' ' '

Proceeding similarly as in the proof of Proposition 4.9 we establish that D<

is r.e. and that R* is r.e.

Again, reasoning as in Proposition 4.9 (except that an oracle for 0' is now
enough) one can easily show that I* and A^ are recursive in 0'.

If nmon(P) is finite then the construction must stop in a finite number of
steps and the first case applies. Since I* C nmon{P), I* is a finite set, and
so A* is recursive. n

Now let us look at the case of finite P. In our complexity considerations, every
atom a will have the cost ||a||. Next, for a clause

r = c <- fli,... , an, -i&i,... , ->bm

we define ||r|| = (£i<n ||aj||) + (Ei<m HfylD + IMI- Finally, for aset Q of clauses
we define

11011 = EIMI-
reQ

Theorem 4.13 Suppose P is a finite general program and -< is some well-
ordering of nmon(P). Then D<,R<,A<, and I* can be computed in time
0(\\mon(P)\\ \\nmon{P)\\ + \\nmon(P)\\2).

Proof: First consider a stage k + 1 in the Forward Chaining construction.
Given D£ and R£, we must make a pass in order through the clauses to check
for each clause r = c -f- ax,... . an, ->bi,... , ->&m whether

{ai,...,an}C££ and {bu ... , bm, c} n ££ = 0.

Notice that at a cost of maintaining an appropriate data structure we can
perform this check in C\\r\\ steps for some constant C and we call such a
check a clause check. Now if {«i,... , an} C D£ and {h,... , bm, c] fl D~£ = 0,
then we must compute clmon{{c} U ££) and check whether dmon({c} U D£) fl
({&!,.... bm}UR^) = 0. Now assuming that we process the clauses in order, if
dmon({c} U D£) n ({&!, ...,bm}URZ) = 0, then r = rk+l, D^+l = dmon({c} U
L£),andi^+1 = {b1,...,bm}uR2.lfclmoa{{c}\JD2)n({b1,...,bm}uR2) ^
0, then we know that r can never be a candidate to r, for any j > k so that
we can just mark clause r and never consider it again. Of course we also mark
rk+i at stage k + 1 if it is defined so that at each stage we will mark at least
one r G nmon(P). Moreover, if rk+i is not defined, then we can stop since
then we know D£ - D< and R^ = R<.

It follows that at stage k + 1. we need to look at most \nmon(P)\ - k clauses
and hence perform at most \nmon(P)\ -k clause checks. Since the construction

27

must stop at stage nmon(P). it follows that the entire construction requires
at most

nmon(P)\
(a)

2
clause checks,

7
(b) \nmon(P)\ operations of computing clmon(D£ U {c}) and checking if

c/monM u ic» n ({fti> • • • 6-> u Rk) = 0 and

(c) the computation of c/mon(0).

Since (x) = \j1x{x + 1), consequently clause checks require 0(\\nmon(P)||2)
steps. Next consider the computations of c/mon(A) and the checking of whether
dm0n{A) n B = 0 for A. B C HP where A n B = 0 which are required for
(b) and (c) above. We claim all this can be done in time proportional to
0(\\mon(P)\\ \\nmon(P)\\). Since in our construction all the elements of D£
and R£ must appear in one of the clauses, we can assume ||.4|| + ||5|| <
| \mon(P) 11 + 11 nmon(P)\ \. Now we can first make a pass through all the clauses
of nmon(P) to get a list of all the elements of HP which occur in one of the
clauses. Call this set V. Another pass through the clauses will allow us to set
up a system of pointers from each c G V to the set of clauses r e mon(P)
such that c occurs in the set of premises of r. We can also mark which c are in
,4 and which c are in B. All this will require 0(\\mon(P)\\ + \\nmon(P)\\) <
0(\\mon(P)\\ \\nmon(P)\\) steps. Now for each c G A, use the pointers from c
to the clauses r e mon(P) to update each r by marking each premise of r in
A. Now if a clause r € mon(P) has all of its premises marked, we mark the
conclusion of r, i.e., we add the cnl(r) to clmon{A), and use the pointers from
dn(r) to clauses in mon(P) to further update the premises of each clause by
marking cln(r). We continue in this fashion until there are no more clauses to
update in which case A together with the marked conclusions will form the
dm<m(A). Of course, if an element of B turns up, we stop the construction. Thus
either we will find that dmon(A) C\B ^ 0 or we will complete the computation
of dmon(A) and be assured that dmon{A)f]B ^ 0. Now assuming that updates
can be performed in constant time, each clause r e mon(P) can require at most
||r|| updates in this'process since once all the premises of a clause have been
marked we no longer have to consider it. Thus we require at most ||mon(P)||
updates so the entire process takes at most 0(\\mon(P)\\) steps. Thus to

' compute the monotonic closures and intersection checks required in (b) and
(c) above takes 0((l + \\mon{P)\\)\\nmon{P)\\) < 0{\\rnon{P)\\\\nmon(P)\\)
steps. D

5 Variants of the Forward Chaining Construction

In this section, we briefly explore the possibility of simplifying our Forward
Chaining construction. First we show that it is possible to reconstruct all stable

28

models of a program via a Forward Chaining algorithm which requires that we
neither monotonically close at each stage nor do we have to check consistency.
As we shall see a drawback of this type of construction is that when it does not
work, we may not even get a stable submodel. Then we shall give the definition
of FC-normal programs as defined in [MNR93b]. FC-Normal programs have
the property that all stable submodels are in fact stable models and moreover
we can drop the consistency check in the Forward Chaining algorithm.

5.1 Computing Extensions without Maintaining Consistency

We begin by giving a simplified variant of the construction given in Section
3 which does monotonically close at each stage and which does not check
consistency.

Let P be a general program. Let -< be a well-ordering of P. We define a
sequence of subsets of subsets of HP, (Mf)?<a, a sequence of elements of P.
(dz)o<z<a, a sequence of elements of HP, (a?)o<^<Q, and an ordinal a = a<

inductively as follows.

Mo = 0 (notice that d0 and a0 are not defined at all). Assume that (M?)?<i3,
(df}o<£</3; (a?)o<c</3 have been defined but a has not been defined. If there is
no clause r G P \ {d^ : 0 < £ < ß} such that prem(r) C \J^<ß M& cons(r) n
Uf</3 M$ = 0, then a — 3 and the construction is completed.

Otherwise, d3 is the -«-first clause in r € P \ {d^ : 0 < f < 3} such that
prem{r) C \J^<g M?. cons(r) n \J^<ß M$ = 0 and aß = c(dß) (and a is not yet
defined). Finally, Mß = U?</3 Af? U {aß}.

Clearly, because of cardinality argument, there is ß such that d,3 is not defined.
Such 3 < \P\+- Therefore a is defined.

Given a general program P and a well-ordering -< of P define M^ = \J^<a M?,
D< — [d^ : 0 < £ < a}. The following two propositions have been proved for
the case of default logic in [MT93]

Proposition 5.1 If cons(D^) n M< — 0, then M_< is a stable model of P.

Proof: Let A = M^, D = D^. Assume cons(D)f)A = 0. By an easy induction
on £ we prove that a?, belongs to CA($) for all £ < a. Hence A C CA{®)-

For the other inclusion, assume C.4(0) \A^0. Then consider the element
in CA{$) \ A with the shortest possible derivation. There must exist a clause
re Pin such a derivation such that prem(r) C A, cons(r) n A = 0, and
c(r) £ A. In particular c(r) ^ a? for all £ < a. Thus r ^ de for all £ < a. But
then the -(-first such clause can serve as a definition of aa, which contradicts
our definition of a. a

Conversely, every stable model of P is of the form M^ for a suitably chosen

29

Proposition 5.2 If M is a stable model of P, then for some -<, M = M^.

Proof: Choose -< in such a way that G(M.P) forms an initial segment of -<!.
We claim that M^ = M.

By induction on f < a we show that a^ G M. Indeed, assume that for all £ < ß,
a? G M. If rf? is not defined then ß — a and so. by inductive assumption, all
a,£ belong to M. If d^ is defined, then there is a clause r such that r / rf? for
all £<ß, prem(r) C Uf</? Mf, cons(r) n U?<,a A/€ = 0. Select the -«-first such
clause r. We prove that r G G(M, P).

Since {a^ : £ < ß} C A/ two cases are possible.
(a) {a£ : f < /?} = M. Then r G G(M, P) by definition.
(b) {e^ : £ < /?} C M. Then, for some j < u) all elements with ^/-derivation
of length smaller than j are in {af : 0 < f < 5} but some element with an
M-derivation of the length j is not in {a? : 0 < £ < /3}. But then there must
be a clause r' in such a derivation such that prem(r') C {a? : 0 < £ < ;3}
and cons(r') n Af = 0. In particular r' G G{M.P). Since r -< r' or r = r',
r' G G(M, P), and G(M, P) forms an initial segment of -<, r G G(A/\ P). Since
c^ = r, aß = c(r). But M is a stable model, thus a supported model of P.
Hence ag G M. Hence we proved that M< C M.

To show the converse inclusion we show, as above, that if AP< \ M ^ 0. then
rfQ can be defined, contradicting the choice of a. Thus M = M_<. □

Proposition 5.2 shows that any given stable model of the program can be con-
structed via our simplified Forward Chaining construction for some ordering.
However arbitrary outputs of this simplified Forward Chaining construction
may not have any nice properties. That is, the output of our simplified For-
ward Chaining construction may not be a stable model of any subprogram
of the original program. Essentially what can happen is that our simplified
version of the Forward Chaining construction allows us .to produce sets which
are too large to be a stable model of any subprogram of our original program.
This is illustrated in the example below.

Example 5.1 Let HP = {a,b,c,d,e} and let P consist of the following
clauses:

(i) a <-
(ii) e<-b

(iii) c <— d
(iv) d<— a,-ib
(v) b <— a, -id

(vi) b <— c, -ie

Here, mon(P) consists of clauses (1), (2) and (3), whereas nmon(P) consists
of clauses (4), (5), and (6).

30

We note that this program is just a subprogram of the program of Example
3.2 and does have a stable model. Indeed in Example 3.2 we showed that
the Forward Chaining construction produces D*' = {a, b. e] when we assume
(6)V(5)-<'(4) which is a stable model of P. One can easily check that the sim-
plified version of the Forward Chaining construction applied to the order -<',
(6)-<'(5)^'(4)-</(3)-<'(2)-<'(l) will produce the same set, i.e. M^> = {a,b,e}.

Next consider the order

(1) -< (2) -< (3) -< (4) -< (5) -< (6).

Then the simplified version of Forward Chaining construction produces some-
thing very different. That is, the stages of the simplified version of the Forward
Chaining construction are as follows:

Stage 0 M0 = 0.
Stage 1 di = (1), ai = a. and Mi = {a}.
Stage 2d2 = (4), a2 = d, and M2 = {a, d}.
Stage 3 d3 = (3), a3 = c, and M3 = {a,c,d}.
Stage 4 d4 = (6), a4 = b, and M4 = {a, b, c, d}.
Stage 5 d5 = (2), a5 = e, and M5 = [a, b, c, d. e}.

Thus M^ = {a, b, c, d, e} which is not a stable model of any subprogram of P.

However for the order (4) -< (5) -< (6), the Forward Chaining construction of
D< produces these stages:
Stage 0 DJ = cfmon(0) = {a}, R< = 0.
Stage 1 n = (4), D^ = c/mon({a} U {d}) = {a, c, d}, R? = {b}.
Stage 2 r2 is undefined and the construction stops at this stage. Hence D^ =
Df = {a,c,d}. We check that I*' consists of the clause (6). j*' consists of
clauses (l)-(5). Thus {a.c.d} is a stable model of the program (1) - (5) but
not of (1) - (6). °

In fact the same relative order on the nonmonotonic clauses of the program
can lead to completely different results under the two constructions. This
is illustrated in our next example where the Forward Chaining construction
produces a stable model while the simplified Forward Chaining construction
produces a set which is not a stable model of any subprogram.

Example 5.2 Let HP = {a, b, c, d, e} and let P consist of the following
clauses:

(i) a <r-

(*:) e <- b

(iü) c<- d

(iv) c <— e

(v) d <r- a, -.ft

(vi \ b <— a, -id

31

(vii) d <— a, ->c
(viii) b <— c, -ie

Here, mon(P) consists of clauses (1), (2), (3) and (4). whereas nmon(P) con-
sists of clauses (5). (6), (7) and (8).

Consider the order

(8) -< (7) ■< (6) -< (5) ■< (4) -< (3) -< (2) -< (1).

The stages of the simplified version of the Forward Chaining construction are
as follows:

Stage 0 M0 = 0.
Stage 1 d\ = (1). GEI = a, and Mi = {a}.
Stage 2 d2 = (7). a2 = d, and M2 = {a, d}.
Stage 3 d3 = (5). a3 = rf, and M3 = {a, d}.
Stage 4 di = (3). a4 = c, and M4 = {a, c, d}.
Stage 5 d5 = (8). a5 = 6, and M5 = {o, 6, c, d}.
Stage 6 d6 = (2), a6 = e, and M6 = {a, 6, c, rf, e}.
Stage 7 d7 = (4), a6 = c, and M7 = {a, b. c, d, e}.

M^ = {a, b, c, d, e] which is not a stable model of any subprogram of P.

However for the order (8) ■< (7) -< (6) -< (5), the Forward Chaining construc-
tion of D< produces these stages:
Stage 0 DJ = c/mon(0) = {a}, RJ = 0.
Stage ln = (6); £>!< = clmon({a} U {b}) = {a, b, c, e}, i?^ = (^}-
Stage 2 r2 is undefined and the construction stops at this stage. Hence
D^ = £>r/ = {a, b, c, e}. We check that 1^ = 0 so that D^ is a stable model of
P. Note that clause (7) is not applicable at Stage 1 of the Forward Chaining
construction because clmon({a}ö{d}) = {a, c, d} which contains the constraint
of clause (7). n

5.2 FC-Normal Programs

In this section we shall define FC-normal programs and state the basic re-
sults about such programs proved in [MNR93b]. We shall see that FC-normal
programs have the property that the Forward Chaining construction always
produces a stable model. In fact for FC-normal programs, one can drop the
consistency check in the Forward Chaining construction and it will still always
produce a stable model.

Definition 5.3 Let P be a program. We say that a subset Con C V(HP)
(where V(HP) is the power set of HP) is a consistency property over P if

32

(i) 0 e Con,
(ii) VA,BCHP{ACB k Con{B) => Con(A)).

(iii) VAcHP(Con(A) =*• C' on{clmon{A))). and
(iv) whenever .4 C Con has the property that A.BeA-^ dceA{A C

CAßCC), then Con(lU).

Condition (1) says that the empty set is consistent. Condition (2) requires that
a subset of a consistent set is also consistent. Condition (3) postulates that
the closure of a consistent set under Horn clauses of the program is consistent.
Finally, the last condition says that the union of a directed family of consistent
sets is also consistent. We note that conditions (1),(2), and (4) are Scott's
conditions for information systems. Condition (3) connects "consistent" sets
to the Horn part of the program; if A is consistent then adding elements
derivable from A via Horn clauses preserves "consistency".

Definition 5.4 Let P be a program and let Con be a consistency property
over P.

(i) A clause C = c -f- ai,... , an,->bi,... ,->bk G nmon(P) is FC-normal
(with respect to Con) if Con(Vl){c}) and not Con(Vu{c, k}) for alii < k
whenever V C HP is such that Con(V), clmon(V) = V, ax,... . an G V,
and c,fti,... ,&fc ^ V.

(ii) P is a FC-normal (with respect to Con) program if all r € nmon(P) are
FC-normal with respect to Con.

(iii) P is FC-normal program if for some property Con C V(HP). P is FC-
normal with respect to Con.

Example 5.3 Let HP = {a, 6, c, d, e, /}. Let the consistency property be de-
fined by the following condition:
A £ Con if and only if either {c, d} C .4 or {e? /} C .4.
Thus {a, 6, c. e}, {a, b, c, /}, {a, 6, d, e}, and {a. 6. rf. /} are the maximal subsets
of V{Hp) which are in Con.

Now consider the following program, P:

(l)a<-
(2) b <- c
(3) c <- 6
(4) c «- a. -id
(5) e^-c,-i/

Then for the program P, clauses (1),(2), and (3) form the monotonic (Horn)
part of P and clauses (4) and (5) form the nonmonotonic part of P. First
it is easy to check that Con is a consistency property over P. The mono-
tonically closed subsets of V(HP) which are in Con are the following sets:
{a},{a,d},{a,e},{aj},{a,b,c}, {a,d,e}, {a,d,f}, {a,6,c,e},and {a,b,c,f}.
It is then easy to check that P is FC-normal with respect to Con. Moreover
one can easily check that P has a unique stable model M = {a, b. c, e}.

33

If we add to P the clause d f- c to get a program P', then Con is no longer
a consistency property over P' because {c} € Con but the monotonic closure
of {c} relative to P' which equals {a, b. c. d} is not in Con.

If we add the clause d <- e, ->/ to P to form a new program P". Con will still
be a consistency property over P" because the property of being a consistency
property depends only on the Horn part of the program. However P" is not
FC-normal with respect to Con because r = d <- e, ->/ is not FC-normal with
respect to Con. That is, for the monotonically closed set {a, b. c. e}, we have
prem{r) C {a, b, c, e}, cons(r)n{a, b, c, e} = 0, but clmon({c{r)}U{a, b, c, e}) =
{a, ft, c, d, e] is not in Con.

Finally if we add to P the clause / <- c, ->e then the resulting program P"'
is still FC-normal with respect to Con but now there are two stable models.
Mi = {a, b, c, e} and M2 = {a, b, c. /}. □

FC-normal programs have all the desirable properties that are possessed by
normal default theories as defined by Reiter in [Rei80]. In fact, it is shown
in [MNR93b] that when one translates FC-normal programs back into the
language of default logics than one obtains a class of default theories called
extended FC-normal default theories which properly contains all normal de-
fault theories. We next shall state the basic results about FC-normal programs
from [MNR93b].

Theorem 5.5 Let P be a FC-normal program then there exists a stable model
of P.

Theorem 5.6 Let P be a FC-normal program with respect to consistency
property Con and let I be a subset of HP such that I e Con. Then there
exists a stable model M of P such that I C M.

In fact all stable models of FC-normal programs can be constructed via a
slightly simplified version of the Forward Chaining construction which we
shall call the Normal Forward Chaining construction. To this end. fix some
well-ordering -< of nmon(P). That is. the well-ordering -< determines some
listing of the clause's of nmon(P),{ra : a 6 7} where 7 is some ordinal. Let
G7 be the least cardinal such that 7 < 67. In what follows, we shall assume
that the ordering among ordinals is given by €. Our normal Forward Chaining
construction will define an increasing sequence of sets {M^}Q607. We will then
define M< = UaGe7M^. In [MNR93b] it is shown that M* is always an stable
model of P. Moreover it is shown in [MNR93b] that all stable models of P
arise from this construction.

The Normal Forward Chaining construction of M^.

Case 0. Let MJ = clmon{f).

34

Case 1. a = ?7 + 1 is a successor ordinal.
Given AI*, let £(a) be the least A e 7 such that

rA = s <- au ... , ap, ->6i,... . -ibk

where a1:... , ap e M* and 61;... , 6*, s ^ A/^. If there is no such £(a), then
let M*+l = M* = M*. Otherwise, let

Mf+l = AI* = dmon(M* U {cln(rtM)}).

Case 2. a is a limit ordinal. Then let AI* — Ußea ^3 •

This given, we have the following.

Corollary 5.7 // P is a FC-normal program and < is any well-ordering of
nmon(p), then

(i) AI* is a stable model of P.
(ii) (Completeness of the construction). Every stable model of P is of the

form M* for a suitably chosen ordering -< of nmon(P).

It is quite straightforward to prove by induction that if P is FC-normal with
respect to consistency property Con, then M* G Con for all a and hence
M* e Con. Thus the following is an immediate consequence of Theorem
5.7(2).

Corollary 5.8 Let P be a FC-normal program with respect to consistency
property Con, then every stable model of P is in Con.

Example 5.4 If we consider the final extended program of Example 5.3, it
is easy to check that any ordering -<i in which the clause rx = e <- c, ->/
precedes the clause r2 = / <- c,^e will have AI*1 = Mi while any ordering
-<2 in which r2 precedes r\ will have AI*2 = M2.

a

We should also point out that if we restrict ourselves to countable programs
P, i.e. if HP is countable, then we can restrict ourselves to orderings of order
type u; where u is the order type of the natural numbers. That is, suppose
we fix some well-ordering -< of nmon(P) of order type ui. Thus, the well-
ordering -< determines some listing of the clauses of nmon(P),{rn : n G to}.
Our normal Forward Chaining construction can be presented in an even more
straightforward manner in this case. Our construction again will define an
increasing sequence of sets {AI*}new in stages. This given, we will then define
M*=Un^M*.

The Countable Normal Forward Chaining construction of M*.

Stage 0. Let M? = clmon(®).

35

Stage n + 1. Let i(n + 1) be the least sea; such that

rs = t «- ai,... , ap, -i&i,... .->bk

where au .. • , ap € M^ and &i, ...,&*>* ^ Af^. If there is no such £(n + 1),
then let M^+1 = M*. Otherwise, let

M*+l = clmon(M^ U {c/n(r<(n+i))}).

This given, we then have the following.

Theorem 5.9 If P is a countable FC-normal program, then

(i) M< is a stable model of P if M< is constructed via the Countable Nor-
mal Forward Chaining algorithm with respect to -<, where -< is any well-
ordering of nmon(P) of order type UJ.

(ii) (Completeness of the construction.) Every stable model of P is of the
form M* for a suitably chosen well-ordering -< of nmon(P) of order type
UJ where P< is constructed via the Countable Normal Forward Chaining
algorithm.

FC-normal programs also possess what Reiter terms the "semi-monotonicity"
property.

Theorem 5.10 Let Pi and P2 be two FC-normal program such that Pi C P2

but mon(Pi) = mon(P2) (that is, Pi,P2 have the same Horn part). Assume,
in addition, that both are FC-normal with respect to the same consistency
property. Then for every stable model Mi of Pi, there is a stable model AI2 of
P2 such that

(i) Mi C M2 and
(ii) NG(MuPi) C NG{M2,P2).

FC-normal programs also satisfy the orthogonality of stable models property
with respect to their consistency property.

Theorem 5.11 Let P be a FC-normal program with respect to a consistency
property Con. Then if Mi and M2 are two distinct stable models of P, Mx U
M2 £ Con.

We end this section with three more theorems which are analogues of results
that hold for normal default theories.

Theorem 5.12 Let P be a FC-normal program with respect to a consistency
property Con. Suppose that clmon{cln(r) : r e nmon(P)} is in Con. Then P
has a unique stable model.

Theorem 5.13 Suppose P is a FC-normal program and that D C nmon(P).
Suppose further that M[and M'2 are distinct stable models of D U mon(P)).

36

Then P has distinct stable models M\ and Mo such that M[C Mx and .l/^ C
A/2.

We say that c G U has a consistent proof scheme with respect to a consistency
property Con over P iff there is a proof scheme

P = ((co, r0, G0},... , (cm, rm, Gm)) (4)

such that cm = c and {c0,... , cm} G Con. We then have the following.

Theorem 5.14 Let P be a FC-normal program with respect to a consistency
property Con. Then c G Hp is- an element of some stable model of P iff c has
a consistent proof scheme with respect to Con.

6 An Application to Default Logic

First of all we show that in propositional default logic, default theories with
a finite number of justification-free clauses are monotonically decidable.

Recall that a default theory (D, W) is a pair where D is a collection of default
rules, that is, rules of form

a: Mßh,... ,M3m (. 5 ^o)

(where a. ßi,... , 8m, and ib are formulas) and W a collection of formulas of
the language L.
We associate an operator, T mapping V(C) into V(C) by stipulating: T(S) = T
if T is the least theory in £ such that W C T, T is closed under propositional
consequence and T satisfies the following condition:

If d a:Mßl,...,Mßm ^ ^ £ T^ S....^ßm $ S, then v G T
W

Now, a theory S C £ is called default extension of (D, I-V) if r(5) = S.

Represent a default theory as a program consisting of three lists:
(i) Elements 7 G W are represented as clauses:

(ii) Rules of form (5) are represented as clauses

7 <r- a, not->/?i,... , not^/?m

(That is, the restraints of the clause representing a default rule r have an
additional negation-as-failure symbol in front).

37

(iii) Processing rules of logic. That is, all the monotonic rules of the system of
classical logic.

We then have the following proposition from [MNR90]:

Proposition 6.1 A collection S C C is a stable model of a program consisting
of clauses of type (i), (ii), and (iii) if and only if S is a default extension of
(D,W).

We assume that the propositional language £ is effectively enumerated (that
is its atoms form an r.e. set)

Proposition 6.2 Let (D, W) be a default theory with a finite number of
justification-free rules and finite W. Then the program P corresponding to
(D, W) is monotonically decidable.

Proof: Notice that under our translation mon(P) is infinite and consists of
these clauses:

(i) ip «— for ip a tautology;
(ii) ip •(- ip, (p D ip for ip, ip E C;

(iii) ip <- OJI, ... ,an where Ql""'a": is a justification-free rule in D.
(iv) 7 4- for 7 G W.

Now, given a finite A, we can construct dmon(A) in stages as follows.

Stage 0. Let W0 = AU W
Stage s + l. Assume we have constructed Ws. Let Is+i be the set of all ip such
that there is a clause

ip 4- OJI,... ,an

of the form (3) such that p £ Ws and for all i < n

D OLi

is a tautology.

If Is+i = 0, then set Wa+i = Ws and stop. Otherwise let Ws+i = Ws U Is+1.

It is easy to see that since there are only finitely many clauses in (3), there
will be a stage s0 such that WSo+i = WSo. Moreover since we are working in
propositional logic, each stage is completely effective so that we can effectively
compute so and the corresponding finite set WSo. Then clearly

c/mon(^) = {<*: A w] D a}

is a recursive set and our procedure shows that that there exists a recursive

38

function / such that if Dk = A, then <p/(fc) is a characteristic function of the
set clmon{A). D

Proposition 6.2 and Proposition 4.12 immediately imply the following corol-
lary.

Corollary 6.3 // (D, W) is a finite propositional default theory, then every
extension of (D, W) is recursive.

Moreover, we can translate the construction of D< to the context of default
logic (regardless if D or W are finite or not). This reverse translation, from
a program to a default theory produces, out of a well-ordering -< of the non-
monotonic part of D, a subset Dx and a theory T such that T is an extension
of (DX,W).

Thus, even when (D,W) has no extension we can still effectively extract a
meaningful part out of {D, W).

7 Forward Chaining and Stratification

In this section we investigate our Forward Chaining method for stratified pro-
grams. Following Apt, Blair and Walker [ABW87] and Przymusinski [Prz87],
we call a program P (locally) stratified if there exists an ordinal v and a func-
tion rank :U^v such that for every clause r = c <- ai,... ,an,->bi,... , -<öm,
rank(ai) < rank(c), for alii 1 < i < n and rank(bi) < rank(c), for all i,
1 < i < m. The ordinal u is called the length of the stratification rank.

Using a generally well-known argument (see Marek and Truszczyhski [MT93],
Section 6.7, for complete presentation) one can show that a stratified program
possesses a unique stable model.

We next consider stable submodels of stratified programs. First let us look at
an example.

Example 7.1 Let HP = {a,b,c}, P = {rur2}, where

n = a <- ->b r2=
:b <- ->c

This is a stratified program. The rank function is given by:

rank(c) = 0, rank(b) = 1, rank(a) = 2

The unique stable model of P is {&}. Notice that mon(P) = 0. Consider now
the ordering -<i given by

With the ordering -<i our algorithm computes the stable submodel {b} which

39

is, as noticed above, the unique stable model of P. Now consider the ordering
-<2 given by

7*! -<2 r2

Now. the stable submodel computed with -<2 is {a}. Moreover the clause r2

is inconsistent. Q

Looking at this example we realize that the conclusion of the clause ri has
the rank greater than that of the clause r2, yet the clause r\ was put earlier in
the ordering -<2. When such an anomaly is eliminated, the stable submodels
produced by such ordering will always be a stable model. That is, we say that
a well-ordering -< of nmon(P) is consistent with the stratification rank if for
every pair of clauses r.s e nmon(P), r -< s implies rank(c(r)) < rank{c(s)).
That is the nonmonotonic clauses of P are sorted according to the rank of their
conclusions (but if these conclusions have the same rank, then the ordering
is arbitrary). We use the notion of ordering consistent with stratification to
prove the basic result of this section.

Theorem 7.1 Let P be a stratified logic program with a stratification rank
and let -< be a well-ordering of nmon(P) consistent with stratification rank.
Then the stable submodel of P generated by -< is the perfect model of P.

The proof of Theorem 7.1 requires a-series of lemmas.

Lemma 7.2 Let P be a stratified program with stratification rank and let -<
be a well-ordering of nmon(P) consistent with rank. If Z C Hp then for all
x E clmon(Z U {c}) \ clmon(Z), rank(x) > rank(c).

Proof: By induction on rank of c, using definition of stratified programs. □

Next we have.

Lemma 7.3 Let P be a stratified program with stratification rank and let -<
be a well-ordering of nmon(P) consistent with rank. Then for any X. if rx is
defined at stage X of the FC-construction with respect to -<, then for all 5 > X
such that rs is defined, rank(c(rs)) > rank(c(r\)).

Proof: First we make the following observation. Suppose that A = p + 1 and
that

rA = z <- ai,... , an, -.&i,... , ^bm.

Thus z $ DJ, ai,... , an G £>;, clmon(Df U {z}) n (i£ U {h,.... &m}) = 0.
Then it is easy to show that any element x e clmon(DJ U {z}) \ DJ must have
rank(x) > rank(z). That is, suppose x G clmon(DJ U {z}) \ DJ. Then ifx^z,
there must be a sequence of Horn clauses (r0,... , r*) of the form

fi = ci *~ a0) • ■ • iaki

40

such that

(i) ck = x
(ii) for all 1 < i < k, either a] G D^, a*- = z or aj = q where / < i for each

j < hi, and
(Hi) for all 1 < i < k, ct e dmon(Df U {z}) \ {Df U {z}).

Note that since Q G clmoa(D^ U {z}) \ (££ U {z}) it must be the case that

{4,... ,4.}n{>,co,... ,c2_i}^0

since otherwise {cß,... ,al
k.} C ££ and hence Q e c/mon(D^) = ££. Thus in

particular z e {a{j,... , a£0} and hence rank(c0) > rank(z). Then if we assume
by induction on j that rank(cj) > rank(z) for all j < i, then rank(ci) >
max({ranA;(4),... , rank(a[.)}) > min({ranA;(z), rank(c0),... , rank{c^i)})
> rank(z). Thus rank(x) > rank(z). This in turn implies that D*+l \ D^ C
{x : rank(x) > rank(c(rx))}.

Now suppose that there is a 5 > A such that r,,- is defined and

rank(c(rs)) < rank(c(rx)).

Then pick S as small as possible and let /i + 1 = d\ Thus for all A < 7 < /i,
ranft(c(r7)) > rank(c(rx)). Hence using the observation above, it is easy to
prove by induction on 7 that Dj \ D^ C {x : rank(x) > rank(c(rx))}. Hence
D* \ D~£ C [x : rank(x) > rank(c(rx))}. But now consider

rs = z' <- a[,... , a'n-^b\,.... ->&„.

Thus z' £ Df, al:... , an e DJ, clmon{D< U {z'}) n (i£ U {b'1:... . b'm}) =
0. But then for each i, ranA;(a-) < rank(z') < rank(c(rx)) so that it must
be the case that a- e Dp since ££ \ L£ C {x : rank(x) > rank{c{rx))}.
Moreover, since clmon(DJ U {z'}) n (R* U {b[,... ,Vm}) = 0 , we certainly
have dmon(DJ U {*'}) n (Ä^ U {b[,... , b'm}) = 0. But this means that r6 is a
candidate to be rx at stage A. But since rank(c(rs)) < rank{c(rx)), rs precedes
rx in our ordering of clauses which would violate the fact that rx is the least
applicable clause at stage A. Thus there can be no such 8. □

Lemma 7.3 implies immediately the following corollary:

Corollary 7.4 Let P be a stratified program with stratification rank and let
-< be a well-ordering of nmon(P) consistent with stratification rank. Then for
any X, ifrx is defined at stage A of the FC-construction with respect to -<, and
rank(c(rx)) = f, then RxC{x: rank(x) < £}.

We next have the following lemma.

Lemma 7.5 Let P be a stratified program. If an atom y e HP possesses
a derivation from a set Z C Hp using only the clauses in mon(P), then y
possesses such derivation from the set Z n {x : rank(x) < rank(y)}.

41

Proof: We proceed by induction on the length of derivation. If y is a conclusion
of an axiom, then y possesses a derivation from empty set. 0, which is identical
with 0 n {x : rank(x) < rank(y)}.

For the inductive step, note that if y is a conclusion of a Horn clause

r = y <- Oi,... .dm,

then by since P is stratified. rank{a{),... rank(am) < rank(y). But then each of
the di has a derivation shorter than the derivation of y and hence by induction,
each üi has a derivation from Z D {x : rank(x) < rank{üi)} and thus from
ZC\{x : rank(x) < rank(y)}. Combining these derivations together with r. we
get the desired result. n

Corollary 7.6 If P is a stratified logic program with stratification rank and
y € clmon{Z), then y e clmon(Z n {x : rank(x) < rank(y)}).

Next. Lemma 7.5 is used to prove the following:

Lemma 7.7 Let P be a stratified program with stratification rank and let -<
be a well-ordering of nmon(P) consistent with stratification rank. Then for
any a, ifra is defined at stage a of the FC-construction with respect to -< and
rank(c(ra)) = f, then

D£n{x: rank{x) < C$ = ((J D$) n {x : rank(x) < £}

Proof: Clearly, a is not a limit ordinal since if a is a limit ordinal, ra is not
defined. So let a = 7 + I. The inclusion D is immediate. To prove the inclusion
C recall that

D2 = clmon(Dj U {c(ra)}) (6)

If y G D£, rank(y) < £, then there is a derivation of y from DJ U {c{ra)} that
uses Horn clauses only. But since our system is stratified, there is a derivation
of y from {D* U {c{ra)}) D {x : rank(x) < rank(z)} = Dj n {x : rank(x) <
rank(z)} (Lemma 7.5). This implies that y belongs to the right hand side of
(6). °
Next, we characterize D£ as the closure of a set of conclusions of clauses in
nmon(P) by means of Horn clauses.

Lemma 7.8 Let P be a stratified logic program with stratification rank and
let -< be a well-ordering of nmon(P) consistent with stratification rank. Then
for any a,

££ = clmoniicir^) : ?] < a A r„ is defined})

Proof: Only the case when ra is defined needs proof since if a is a limit ordinal,

42

the result is obvious, and if a is a nonlimit ordinal where ra is not defined,
the construction stopped.

So, assuming that ra is defined, then a = ß + 1 and

K = clmon{D^ U {c(ra})

Now using the inductive assumption and the fact that c/mon(-) is monotonic
and idempotent we get the desired conclusion. □

Now recall the construction of the unique stable model of a stratified logic
program as presented in [MT93]. Define

nmon^ = {r : r £ nmon(P) A rank(c(r)) = £}

mon^ — {r : r £ mon(P) A rank(c(r)) = £}

We also define

nmon<£ = \J nmon^ mon<^ = |J mon^

nmon^ = |J nmon^ mon^ = |J raon^

Let us now look at the construction of [MT93], Section 6.7. This is. essentially,
the construction of [ABW87] extended to transfinite. One constructs a family
of subsets of HP, (A^)5<iy as follows:

(i) Since P is stratified, nmon0 = 0 and M0 is defined as the closure of 0
under the clauses in mono.

(ii) If Mv, T] < £ is defined, we put M<? = U^-M?. Next, we reduce the
clauses in nmon^ by M<?. That is, for each clause

C = c <- ai,... ,an-i&i,.. • ,->öm

in nmon^ if for some i, 1 < i < m, b{ £ M<€, then this clause is elimi-
nated. In the remaining clauses the negative parts are eliminated. In this
fashion we get a set Q? of Horn clauses. Then M% is defined as the closure
of M<£ under clauses in mon^ U Q^.

(iii) Finally we set M = \J^<V M? (recall that v is the length of stratification).
It has been proved in [MT93] that M is the unique stable model of P.

Since all the clauses in mon^ U Q^ have the conclusion of the rank precisely f
it follows that for every £ < u,

M n {x : ran&(:r) < £} = M{

43

Define now p(£) as the least ordinal greater or equal than all a such that ra

is defined and rank(ra) < f. Clearly, function p(-) is well defined. Lemma 7.3
implies the following.

Lemma 7.9 Function p(-) is (weakly) monotonic. that is

fi < & implies p(fx) < p(&)

We shall prove now the crucial lemma in the proof of Theorem 7.1.

Lemma 7.10 Let P be a stratified logic program with stratification rank and
let -< be a well-ordering of nmon(P) consistent with stratification rank. Then
for any £ smaller than the length of stratification rank

Dfa n {x : rank{x) < £} = Mv (7)

Proof: We proceed by induction on f. If f = 0, then the left hand side of 7 is
the closure of 0 under mon(P) whereas the right hand side is the closure of
0 under the clauses in mono. The desired equality then follows from Lemma
7.5.

Now assume that for all r\ < £,

Dp(n) n ix '■ ranKx) <v} = Mn.

We prove that D^ n {x : rank(x) < £} = Mc. To this end we show the
inclusion of the left hand side in the right hand side and conversely. For the
inclusion C. we proceed by induction on ordinals r? such that rank{c{rr,)) < £.
The base step is very similar to the base step of outer induction and we leave
it to the reader. The limit step is obvious.

Now assume that a = 7 + 1 and that Df (~l {x : rank(x) < £} C Mv Consider
the clause ra. By Corollary 7.4, the elements of negative part of the body of of
ra all have the rank smaller than £. It is easy to see that cons(ra) n M<? = 0
since the negative literals of ra are all of rank smaller than £ and do not belong
to clmon(Dj) and by the (outer) induction hypothesis Df contains all A/„ for
77 < f. This implies that the Horn clause c(ra) f- prem(ra) belongs to Q€.

. Since prem{ra) C U^, by the (inner) induction hypothesis, prem(ra) C M?.
Since A/5 is closed under the clauses of Q^ c(ra) G Me. This, in turn implies
that the set of c(rv) for all r) < a for nonlimit ordinals is included in M.
Indeed, by the inner inductive assumption, the conclusions of all clauses rv

with 77 < a belong to M? and thus to M as well. We can now use Lemma 7.8
to prove that since M is closed under all Horn clauses in iV, D^ is entirely
included in M. But then

££ n {x : rank{x) < f} C M n {z : rank{x) < £} = Me

This completes the (inner) induction argument for the inclusion C.

44

We now show the inclusion D. Clearly, we only need to prove that whenever
z G M$ and rank(z) = f, then z G Dp^). (for z's of smaller rank the inductive
assumption immediately implies the result). But if z G M| and rank(z) = £,
then z possesses a (monotonic) derivation from U,<(^ using the clauses
in mon^ UQ?. By induction on the length of such derivation, we prove that
z G £>1fv Notice that whenever d = y <- al5... , am is a clause in Q?. then
rank(y) = f. Also for some &i,.. A ^ M?, rd = y «- ax,... , am->6l5... . ->&„
belongs to AT. But then the rank of each bi,... , bn is strictly smaller than f.
Since &i,... , bn £ M<€, it follows that for each r] < p(£), bu ... ,bn (£ DJ.
Indeed,

M<? = D(j P(„) n ix : rank{x) < £}

and at stages above \Jv<^p{r)), no element of rank smaller than £ is added to

Now suppose 2 G M?, rank(z) = £, and z has a derivation of length 1 from
M<£ using the clauses from mon? U Qv Then either z is a conclusion of an
axiom in mon^ in which case z G DJ, or else there is an axiom rf in Q€ with
conclusion z. In that case there is a clause

rd- z <- ->&:,... ,-•&„

in N, bi,... ,bn <£ Dj^. The clause rd is, thus, always applicable. Eventually
by some stage p the clause rd becomes the first clause which can be applied if
z is not already in DJ. Thus z G DJ^.

In the inductive step we reason similarly. If z possesses a derivation from
M<£ of length A; + 1 using the clauses from mon^ U Q$, then there is a clause
rf = z <- oi,... ,am belonging to mon^ U Qf used in this derivation. Since
ai,... ,am have derivations of length at most k, they belong to Dj^ by our
inductive assumption. Thus for some r\ < p(f), all ax,... ,am belong to DJ. As
in the base case of our induction, we need to consider two cases. If d G mon^,
then z G DJ since the latter set is closed under all Horn clauses. If d G Q5,
then for some bx,... , bm all of which do not belong to DJ^ the clause

rd = z <r- au... , am, ->&i,... , ->ftn

belongs to N. The clause rd is, therefore, applicable starting at 77 (if z is not
already in DJ). Thus it, eventually, at some stage p, rd will becomes the
first applicable clause (again, if z is not derived earlier). Therefore, definitely,
z G DI«. This completes the proof of inclusion D and of the lemma. □

Proof of Theorem 7.1: Let v be the length of stratification. We need to
prove that D< = M. But

45

since the hierarchy of sets D5^ is increasing and cofinal in the hierarchy of
sets DJ. By Lemma 7.10

U %) = U Mt = M.

Thus D< = M as claimed. □

8 Modifications of the Construction

We will briefly discuss several modifications of the forward chaining construc-
tion described in our paper. To this end we need a short introduction to
various three-valued interpretations. A general survey of these constructions
(and their generalizations, for instance in bilattice setting) can be found in
[Fi98].

A three-valued interpretation of a program is a pair / = (T, F) of sets of atoms
so that T n F = 0. Such interpretation assigns to an atom a truth value from
the set {0, _L, 1}. Namely. 1(a) = 1 if a e T. 1(a) = 0 if a E F and 1(a) = _L
otherwise. Truth value can be easily extended to literals, by defining ->0 = 1,
-■1 = 0, and -iJ. = ±.

Given a propositional program P (or a ground version of a predicate program)
we can assign to it various operators in the space of interpretations.

The Kunen-Fitting operator (called "Kripke-Kleene" in [Fi98]) assigns to an
interpretation I an interpretation I' as follows:

(i) l'(p) = 1 if for some clause C=p<-h,... ,ln in P, 1(h) = ... = /(/„) =
1

(ii) I'(p) = 0 if for every clause C = p <- h,... :ln in P, for some j < n,

1(h) = o
(iii) I'(p) = -L otherwise.

This operator possesses a least fixpoint. This fixpoint is a three-valued model
of the program.

Van Gelder, Ross and Schlipf [VGRS91] introduced another operator, leading
to other three-valued model of a logic program. It is based on the notion of
unfounded set. Given a three-valued interpretation I, an unfounded set with
respect to / is any set of atoms X with the following property:

- Whenever pel, then for every clause C - p <- h,... , ln in program P,
for some j < n either I(lj) = 0 or lj is an atom which belongs to X (or is
not exclusive here).

There is always a largest unfounded set with respect to any interpretation /.
Now define a new interpretation V as follows. V(p) = 1 if for some clause

46

C £ P,C =p<-h,... ,ln, 1(h) - ■ • • = /(/„) = 1. I'(P) = 0 if p belongs
to the largest unfounded set with respect to I. Finally. I'(p) = _L for the
remaining atoms p. It is clear that we defined a three-valued interpretation.
The operator assigning /' to / can be iterated and it also possesses the least
fixpoint. This fixpoint is called well-founded model of P.

Well-founded model generalizes stable model, in the sense that if M is a stable
model of P than the interpretation (A/, At \ M) is a fixpoint of the operator
described above. Moreover, well-founded model approximates stable models.
That is positive part of well-founded models is included in the intersection of
all stable models, whereas the negative part of it is included in the intersec-
tion of the complements of stable models. Fitting's paper [Fi98] contains an
extensive discussion of abstract treatment of well-founded semantics and its
generalizations.

Since D^ fl ^ = 0, the pair (D£,R£) is a three-valued interpretation. In
particular (D<, R*} is a three-valued interpretation. It is natural to ask about
the relationship of this interpretation to the well-founded interpretation. Ob-
serve that (D*, R*) does not need to be a three-valued model of the program.
This happens when there are inconsistent clauses.

On the other hand, the well-founded interpretation is not always included in
(D^.R^). Indeed, for a Horn program P = {p <- q, q <- p} the interpretation
(D~\ #x) = (0,0), whereas the well-founded interpretation fails both p and q.

It should be clear that the construction of (D^^R^) admits various modifi-
cations. Notice that we can increase at each stage f of the construction the
negative side of the construction. Specifically, at each stage of the construc-
tion we can modify the set R£ extending it to a larger set S£ (as long as
D£ n S£ = 0) and use S£ instead of Rf in the later stages of the construc-
tion. What is the effect of such modifications? The result is that more clauses
may become inconsistent and some clauses that could be applied in the For-
ward Chaining construction may become inapplicable. But the basic result,
namely that D< is a stable model of P \ I* remains true. That is, some pre-
viously applicable clauses may become inapplicable or inconsistent, but when
the latter are eliminated the constructed set is a stable model of the resulting
program. The intervention is, however, drastic. That is. since some clauses
previously applicable may become inapplicable, there is no natural relation-
ship between the models obtained from the modified construction and those
obtained from the original one.

Moreover, once we select a clause for application, we can close the sets D^ and
Rf under various operators. Specifically we can apply Kunen-Fitting operator
(with the iteration to UJ or further) or Van Gelder, Ross, Schlipf construction.
All such modifications are possible and lead to a cross over of our theory with
other three-valued approaches.

Finally, notice that in the case of finite prepositional programs (or finite pred-

47

icate programs without function symbols) all these constructions can be per-
formed in polynomial time. The "straightforward" Forward Chaining construc-
tion seems to be the simplest.

9 Conclusions

We introduced a novel technique for computing stable models of programs
(and so, by interpretability results, also of default extensions, and answer sets
for logic programs with classical negation). In contrast with other techniques
of finding stable models our algorithm always computes a subset of the base
of the program. Moreover, this subset is a stable model of a subprogram of
the original program. We feel that the technique introduced in this paper will
have applications in real-time systems for computing values of default state-
ments and parameters. The class of stable submodels (which properly contains
stable models) is interesting in its own right and deserves further study. For
example, our Forward Chaining construction suggests a new semantics for
logic programs and default theories. That is, given a program P. we say a
stable submodel D^ is maximal if there is no ordering -<' such that A* C A< .
That is the set of inconsistent clauses is minimal (recall that A* = P\I<).
Note that if P has a stable model M, then there is an ordering -<' such that
D<: = M and so A*' = P. Thus every maximal stable submodel must also
have A< = P and so, in this case, every maximal stable submodel is in fact
an stable model. Thus if P has a stable model then the set of maximal sta-
ble submodels, MSS(P) is just the set of stable models. However MSS{P) is
nonempty for all programs. Thus the set of maximal stable submodels extends
the usual stable semantics. We shall explore the properties of maximal stable
submodels in later papers.

References

[AvE82] K.R. Apt and M.H. van Emden. Contributions too the theory of logic
programming. Journal of the ACM, 29:841-862, 1982

[ABW87] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative
knowledge. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89-142, Los Altos, CA, 1987. Morgan
Kaufmann.

[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of
Theoretical Computer Science, pages 493-574. Cambridge, MA, 1990,
MIT Press.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and data bases, pages 293-322. Plenum Press, 1978.

48

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing
the satisfiability of prepositional Horn formulae. Journal of Logic
Programming, 3:267-284, 1984.0

[Doy79] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231—
272, 1979.

[Fi85] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of
Logic Programming, 2:295-312, 1985.

[Fi98] M. Fitting. Fixpoint Semantics for Logic Programming, A survey
Proceedings of the 12th Workshop on Mathematical Foundations of
Programming Semantics. Special issue of Theoretical Computer Science,
to appear.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th International
Symposium on Logic Programming, pages 1070-1080, Cambridge, MA..
1988. MIT Press.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation.
In D. Warren and P. Szeredi, editors. Logic Programming: Proceedings of
the 1th International Conference, pages 579-597, Cambridge, MA., 1990.
MIT Press.

[GS92] J. Grant and V.S. Subrahmanian. Reasoning about inconsistent
knowledge bases. IEEE Trans, on Knowledge and Data Engineering,
to appear.

[GS93] J. Grant and V.S. Subrahmanian. The optimistic and cautious semantics
for inconsistent knowledge bases. Department of Computer Science.
University of Maryland, 1993.

[JS72a] CG. Jockusch and R.I. Soare. Degrees of members of TT? classes. Pacific
Journal of Mathematics, 40:605-616, 1972.

[JS72b] CG. Jockusch and R.I. Soare. TT? classes and degrees of theories.
Transactions of American Mathematical Society, 173:33-56, 1972.

[KL89] M. Kifer and E. Lozinskii. RI: A logic for reasoning about inconsistency.
TARK IV, Asilomar, CA, pages 253-262, 1989.

[KN93a] W. Kohn and A. Nerode. Models for Hybrid Systems: Automata,
Topologies, Controllability, Observability. In: Hybrid Systems, R.L.
Grossman, A. Nerode, A.P. Ravn, H. Rischel, eds. Springer Lecture
Notes in Computer Science 736, pages 317-356, 1993.

[Ku87] K. Kunen. Negation in Logic Programming. Journal of Logic
Programming, 4:289-308, 1987.

[MNR90] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule systems I.
Annals of Mathematics and Artificial Intelligence, 1:241-273, 1990.

49

[MNR92c] W. Marek. A. Nerode, and J.B. Remmel. Nonmonotonic rule systems II.
Annals of Mathematics and Artificial Intelligence. 5:229-263, 1992.

[MNR92a] W. Marek. A. Nerode, and J. B. Remmel. The stable models of predicate
logic programs. In K.R. Apt, editor, Proceedings of International
Joint Conference and Symposium on Logic Programming, pages 446-
460, Boston. MA, 1992. MIT Press, to appear in Journal of Logic
Programming.

[MNR95] W. Marek, A. Nerode, and J. B. Remmel. Complexity of Normal Default
Logic and Related Modes of Nonmonotonic Reasoning, Proceedings of
10th Annual IEEE Symposium on Logic in Computer Science, pp. 178-
187, 1995.

[MNR93b] W. Marek. A. Nerode, and J. B. Remmel. Context for Belief Revision:
FC-Normal Nonmonotonic Rule Systems. Annals of Pure and Applied
Logic 67(1994) pp. 269-324.

[MT91] W. Marek and M. Truszczyhski. Autoepistemic logic. Journal of the
ACM, 38:588 - 619, 1991.

[MT93] W.. Marek and M. Truszczyhski. Nonmonotonic Logic - Context-
dependent reasonings Berlin, Heidelberg, New York, 1993, Springer.

[McD82] D. McDermott. Nonmonotonic logic II: Nonmonotonic modal theories.
Journal of the ACM, 29:33-57, 1982.

[MD80] D. McDermott and J. Doyle. Nonmonotonic logic I Artificial
Intelligence. 13:41-72, 1980.

[Prz87] T. Przymusinski, On the declarative semantics of stratified deductive
databases and logic programs, In J. Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193-216, Los Altos,
CA, 1987. Morgan Kaufmann.

[RDB89] M. Reinfrank. 0. Dressier, and G. Brewka. On the relation between
truth maintenance and non-monotonic logics. In Proceedings of IJCAI-
89, pages 1206-1212, San Mateo, CA., 1989. Morgan Kaufmann.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81—
132, 1980.

[Sco82] D. Scott. Domains for denotational semantics. In Proceedings of ICALP-
82, pages 577-613, Heidelberg, 1982. Springer Verlag.

[VGRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf. Unfounded sets and well-
founded semantics for general logic programs. Journal of the ACM
38(1991).

[YBB92] F. Yang, H. Blair, and A. Brown. Programming in default logic.
University of Syracuse, 1992.

50

